912 resultados para Neural algorithm
Resumo:
In a max-min LP, the objective is to maximise ω subject to Ax ≤ 1, Cx ≥ ω1, and x ≥ 0 for nonnegative matrices A and C. We present a local algorithm (constant-time distributed algorithm) for approximating max-min LPs. The approximation ratio of our algorithm is the best possible for any local algorithm; there is a matching unconditional lower bound.
Resumo:
Relative geometric arrangements of the sample points, with reference to the structure of the imbedding space, produce clusters. Hence, if each sample point is imagined to acquire a volume of a small M-cube (called pattern-cell), depending on the ranges of its (M) features and number (N) of samples; then overlapping pattern-cells would indicate naturally closer sample-points. A chain or blob of such overlapping cells would mean a cluster and separate clusters would not share a common pattern-cell between them. The conditions and an analytic method to find such an overlap are developed. A simple, intuitive, nonparametric clustering procedure, based on such overlapping pattern-cells is presented. It may be classified as an agglomerative, hierarchical, linkage-type clustering procedure. The algorithm is fast, requires low storage and can identify irregular clusters. Two extensions of the algorithm, to separate overlapping clusters and to estimate the nature of pattern distributions in the sample space, are also indicated.
Resumo:
In rapid parallel magnetic resonance imaging, the problem of image reconstruction is challenging. Here, a novel image reconstruction technique for data acquired along any general trajectory in neural network framework, called ``Composite Reconstruction And Unaliasing using Neural Networks'' (CRAUNN), is proposed. CRAUNN is based on the observation that the nature of aliasing remains unchanged whether the undersampled acquisition contains only low frequencies or includes high frequencies too. Here, the transformation needed to reconstruct the alias-free image from the aliased coil images is learnt, using acquisitions consisting of densely sampled low frequencies. Neural networks are made use of as machine learning tools to learn the transformation, in order to obtain the desired alias-free image for actual acquisitions containing sparsely sampled low as well as high frequencies. CRAUNN operates in the image domain and does not require explicit coil sensitivity estimation. It is also independent of the sampling trajectory used, and could be applied to arbitrary trajectories as well. As a pilot trial, the technique is first applied to Cartesian trajectory-sampled data. Experiments performed using radial and spiral trajectories on real and synthetic data, illustrate the performance of the method. The reconstruction errors depend on the acceleration factor as well as the sampling trajectory. It is found that higher acceleration factors can be obtained when radial trajectories are used. Comparisons against existing techniques are presented. CRAUNN has been found to perform on par with the state-of-the-art techniques. Acceleration factors of up to 4, 6 and 4 are achieved in Cartesian, radial and spiral cases, respectively. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
A simple but efficient algorithm is presented for linear programming. The algorithm computes the projection matrix exactly once throughout the computation unlike that of Karmarkar’s algorithm where in the projection matrix is computed at each and every iteration. The algorithm is best suitable to be implemented on a parallel architecture. Complexity of the algorithm is being studied.
Resumo:
With the advent of VLSI it has become possible to map parallel algorithms for compute-bound problems directly on silicon. Systolic architecture is very good candidate for VLSI implementation because of its regular and simple design, and regular communication pattern. In this paper, a systolic algorithm and corresponding systolic architecture, a linear systolic array, for the scanline-based hidden surface removal problem in three-dimensional computer graphics have been proposed. The algorithm is based on the concept of sample spans or intervals. The worst case time taken by the algorithm is O(n), n being the number of segments in a scanline. The time taken by the algorithm for a given scene depends on the scene itself, and on an average considerable improvement over the worst case behaviour is expected. A pipeline scheme for handling the I/O process has also been proposed which is suitable for VLSI implementation of the algorithm.
Resumo:
We present a low-complexity algorithm based on reactive tabu search (RTS) for near maximum likelihood (ML) detection in large-MIMO systems. The conventional RTS algorithm achieves near-ML performance for 4-QAM in large-MIMO systems. But its performance for higher-order QAM is far from ML performance. Here, we propose a random-restart RTS (R3TS) algorithm which achieves significantly better bit error rate (BER) performance compared to that of the conventional RTS algorithm in higher-order QAM. The key idea is to run multiple tabu searches, each search starting with a random initial vector and choosing the best among the resulting solution vectors. A criterion to limit the number of searches is also proposed. Computer simulations show that the R3TS algorithm achieves almost the ML performance in 16 x 16 V-BLAST MIMO system with 16-QAM and 64-QAM at significantly less complexities than the sphere decoder. Also, in a 32 x 32 V-BLAST MIMO system, the R3TS performs close to ML lower bound within 1.6 dB for 16-QAM (128 bps/Hz), and within 2.4 dB for 64-QAM (192 bps/Hz) at 10(-3) BER.
Resumo:
A neural network approach for solving the two-dimensional assignment problem is proposed. The design of the neural network is discussed and simulation results are presented. The neural network obtains 10-15% lower cost placements on the examples considered, than the adjacent pairwise exchange method.
Resumo:
A new fast and efficient marching algorithm is introduced to solve the basic quasilinear, hyperbolic partial differential equations describing unsteady, flow in conduits by the method of characteristics. The details of the marching method are presented with an illustration of the waterhammer problem in a simple piping system both for friction and frictionless cases. It is shown that for the same accuracy the new marching method requires fewer computational steps, less computer memory and time.
Resumo:
A simple and efficient algorithm for the bandwidth reduction of sparse symmetric matrices is proposed. It involves column-row permutations and is well-suited to map onto the linear array topology of the SIMD architectures. The efficiency of the algorithm is compared with the other existing algorithms. The interconnectivity and the memory requirement of the linear array are discussed and the complexity of its layout area is derived. The parallel version of the algorithm mapped onto the linear array is then introduced and is explained with the help of an example. The optimality of the parallel algorithm is proved by deriving the time complexities of the algorithm on a single processor and the linear array.
Resumo:
For the specific case of binary stars, this paper presents signal-to-noise ratio (SNR) calculations for the detection of the parity (the side of the brighter component) of the binary using the double correlation method. This double correlation method is a focal plane version of the well-known Knox-Thompson method used in speckle interferometry. It is shown that SNR for parity detection using double correlation depends linearly on binary separation. This new result was entirely missed by previous analytical calculations dealing with a point source. It is concluded that, for magnitudes relevant to the present day speckle interferometry and for binary separations close to the diffraction limit, speckle masking has better SNR for parity detection.
Resumo:
The K-means algorithm for clustering is very much dependent on the initial seed values. We use a genetic algorithm to find a near-optimal partitioning of the given data set by selecting proper initial seed values in the K-means algorithm. Results obtained are very encouraging and in most of the cases, on data sets having well separated clusters, the proposed scheme reached a global minimum.
Resumo:
In this paper we develop a multithreaded VLSI processor linear array architecture to render complex environments based on the radiosity approach. The processing elements are identical and multithreaded. They work in Single Program Multiple Data (SPMD) mode. A new algorithm to do the radiosity computations based on the progressive refinement approach[2] is proposed. Simulation results indicate that the architecture is latency tolerant and scalable. It is shown that a linear array of 128 uni-threaded processing elements sustains a throughput close to 0.4 million patches/sec.
Resumo:
An associative memory with parallel architecture is presented. The neurons are modelled by perceptrons having only binary, rather than continuous valued input. To store m elements each having n features, m neurons each with n connections are needed. The n features are coded as an n-bit binary vector. The weights of the n connections that store the n features of an element has only two values -1 and 1 corresponding to the absence or presence of a feature. This makes the learning very simple and straightforward. For an input corrupted by binary noise, the associative memory indicates the element that is closest (in terms of Hamming distance) to the noisy input. In the case where the noisy input is equidistant from two or more stored vectors, the associative memory indicates two or more elements simultaneously. From some simple experiments performed on the human memory and also on the associative memory, it can be concluded that the associative memory presented in this paper is in some respect more akin to a human memory than a Hopfield model.