896 resultados para Network Traffic
Resumo:
This article asks questions about the futures of power in the network era. Two critical emerging issues are at work with uncertain outcomes. The first is the emergence of the collaborative economy, while the second is the emergence of surveillance capabilities from both civic, state and commercial sources. While both of these emerging issues are expected by many to play an important role in the future development of our societies, it is still unclear whose values and whose purposes will be furthered. This article argues that the futures of these emerging issues depend on contests for power. As such, four scenarios are developed for the futures of power in the network era using the double variable scenario approach.
Resumo:
Literature is limited in its knowledge of the Bluetooth protocol based data acquisition process and in the accuracy and reliability of the analysis performed using the data. This paper extends the body of knowledge surrounding the use of data from the Bluetooth Media Access Control Scanner (BMS) as a complementary traffic data source. A multi layer simulation model named Traffic and Communication Simulation (TCS) is developed. TCS is utilised to model the theoretical properties of the BMS data and analyse the accuracy and reliability of travel time estimation using the BMS data.
Resumo:
Network reconfiguration after complete blackout of a power system is an essential step for power system restoration. A new node importance evaluation method is presented based on the concept of regret, and maximisation of the average importance of a path is employed as the objective of finding the optimal restoration path. Then, a two-stage method is presented to optimise the network reconfiguration strategy. Specifically, the restoration sequence of generating units is first optimised so as to maximise the restored generation capacity, then the optimal restoration path is selected to restore the generating nodes concerned and the issues of selecting a serial or parallel restoration mode and the reconnecting failure of a transmission line are next considered. Both the restoration path selection and skeleton-network determination are implemented together in the proposed method, which overcomes the shortcoming of separate decision-making in the existing methods. Finally, the New England 10-unit 39-bus power system and the Guangzhou power system in South China are employed to demonstrate the basic features of the proposed method.
Resumo:
Travel time prediction has long been the topic of transportation research. But most relevant prediction models in the literature are limited to motorways. Travel time prediction on arterial networks is challenging due to involving traffic signals and significant variability of individual vehicle travel time. The limited availability of traffic data from arterial networks makes travel time prediction even more challenging. Recently, there has been significant interest of exploiting Bluetooth data for travel time estimation. This research analysed the real travel time data collected by the Brisbane City Council using the Bluetooth technology on arterials. Databases, including experienced average daily travel time are created and classified for approximately 8 months. Thereafter, based on data characteristics, Seasonal Auto Regressive Integrated Moving Average (SARIMA) modelling is applied on the database for short-term travel time prediction. The SARMIA model not only takes the previous continuous lags into account, but also uses the values from the same time of previous days for travel time prediction. This is carried out by defining a seasonality coefficient which improves the accuracy of travel time prediction in linear models. The accuracy, robustness and transferability of the model are evaluated through comparing the real and predicted values on three sites within Brisbane network. The results contain the detailed validation for different prediction horizons (5 min to 90 minutes). The model performance is evaluated mainly on congested periods and compared to the naive technique of considering the historical average.
Resumo:
Crashes on motorway contribute to a significant proportion (40-50%) of non-recurrent motorway congestions. Hence reduce crashes will help address congestion issues (Meyer, 2008). Crash likelihood estimation studies commonly focus on traffic conditions in a Short time window around the time of crash while longer-term pre-crash traffic flow trends are neglected. In this paper we will show, through data mining techniques, that a relationship between pre-crash traffic flow patterns and crash occurrence on motorways exists, and that this knowledge has the potential to improve the accuracy of existing models and opens the path for new development approaches. The data for the analysis was extracted from records collected between 2007 and 2009 on the Shibuya and Shinjuku lines of the Tokyo Metropolitan Expressway in Japan. The dataset includes a total of 824 rear-end and sideswipe crashes that have been matched with traffic flow data of one hour prior to the crash using an incident detection algorithm. Traffic flow trends (traffic speed/occupancy time series) revealed that crashes could be clustered with regards of the dominant traffic flow pattern prior to the crash. Using the k-means clustering method allowed the crashes to be clustered based on their flow trends rather than their distance. Four major trends have been found in the clustering results. Based on these findings, crash likelihood estimation algorithms can be fine-tuned based on the monitored traffic flow conditions with a sliding window of 60 minutes to increase accuracy of the results and minimize false alarms.
Resumo:
Crashes that occur on motorways contribute to a significant proportion (40-50%) of non-recurrent motorway congestions. Hence, reducing the frequency of crashes assists in addressing congestion issues (Meyer, 2008). Crash likelihood estimation studies commonly focus on traffic conditions in a short time window around the time of a crash while longer-term pre-crash traffic flow trends are neglected. In this paper we will show, through data mining techniques that a relationship between pre-crash traffic flow patterns and crash occurrence on motorways exists. We will compare them with normal traffic trends and show this knowledge has the potential to improve the accuracy of existing models and opens the path for new development approaches. The data for the analysis was extracted from records collected between 2007 and 2009 on the Shibuya and Shinjuku lines of the Tokyo Metropolitan Expressway in Japan. The dataset includes a total of 824 rear-end and sideswipe crashes that have been matched with crashes corresponding to traffic flow data using an incident detection algorithm. Traffic trends (traffic speed time series) revealed that crashes can be clustered with regards to the dominant traffic patterns prior to the crash. Using the K-Means clustering method with Euclidean distance function allowed the crashes to be clustered. Then, normal situation data was extracted based on the time distribution of crashes and were clustered to compare with the “high risk” clusters. Five major trends have been found in the clustering results for both high risk and normal conditions. The study discovered traffic regimes had differences in the speed trends. Based on these findings, crash likelihood estimation models can be fine-tuned based on the monitored traffic conditions with a sliding window of 30 minutes to increase accuracy of the results and minimize false alarms.
Resumo:
Current Bayesian network software packages provide good graphical interface for users who design and develop Bayesian networks for various applications. However, the intended end-users of these networks may not necessarily find such an interface appealing and at times it could be overwhelming, particularly when the number of nodes in the network is large. To circumvent this problem, this paper presents an intuitive dashboard, which provides an additional layer of abstraction, enabling the end-users to easily perform inferences over the Bayesian networks. Unlike most software packages, which display the nodes and arcs of the network, the developed tool organises the nodes based on the cause-and-effect relationship, making the user-interaction more intuitive and friendly. In addition to performing various types of inferences, the users can conveniently use the tool to verify the behaviour of the developed Bayesian network. The tool has been developed using QT and SMILE libraries in C++.
Resumo:
Residential balcony design influences speech interference levels caused by road traffic noise and a simplified design methodology is needed for optimising balcony acoustic treatments. This research comprehensively assesses speech interference levels and benefits of nine different balcony designs situated in urban street canyons through the use of a combined direct, specular reflection and diffuse reflection path theoretical model. This thesis outlines the theory, analysis and results that lead up to the presentation of a practical design guide which can be used to predict the acoustic effects of balcony geometry and acoustic treatments in streets with variable geometry and acoustic characteristics.
Resumo:
Most large cities around the world are undergoing rapid transport sector development to cater for increased urbanization. Subsequently the issues of mobility, access equity, congestion, operational safety and above all environmental sustainability are becoming increasingly crucial in transport planning and policy making. The popular response in addressing these issues has been demand management, through improvement of motorised public transport (MPT) modes (bus, train, tram) and non-motorized transport (NMT) modes (walk, bicycle); improved fuel technology. Relatively little attention has however been given to another readily available and highly sustainable component of the urban transport system, non-motorized public transport (NMPT) such as the pedicab that operates on a commercial basis and serves as an NMT taxi; and has long standing history in many Asian cities; relatively stable in existence in Latin America; and reemerging and expanding in Europe, North America and Australia. Consensus at policy level on the apparent benefits, costs and management approach for NMPT integration has often been a major transport planning problem. Within this context, this research attempts to provide a more complete analysis of the current existence rationale and possible future, or otherwise, of NMPT as a regular public transport system. The analytical process is divided into three major stages. Stage 1 reviews the status and role condition of NMPT as regular public transport on a global scale- in developing cities and developed cities. The review establishes the strong ongoing and future potential role of NMPT in major developing cities. Stage 2 narrows down the status review to a case study city of a developing country in order to facilitate deeper role review and status analysis of the mode. Dhaka, capital city of Bangladesh, has been chosen due to its magnitude of NMPT presence. The review and analysis reveals the multisectoral and dominant role of NMPT in catering for the travel need of Dhaka transport users. The review also indicates ad-hoc, disintegrated policy planning in management of NMPT and the need for a planning framework to facilitate balanced integration between NMPT and MT in future. Stage 3 develops an integrated, multimodal planning framework (IMPF), based on a four-step planning process. This includes defining the purpose and scope of the planning exercise, determining current deficiencies and preferred characteristics for the proposed IMPF, selection of suitable techniques to address the deficiencies and needs of the transport network while laying out the IMPF and finally, development of a delivery plan for the IMPF based on a selected layout technique and integration approach. The output of the exercise is a planning instrument (decision tool) that can be used to assign a road hierarchy in order to allocate appropriate traffic to appropriate network type, particularly to facilitate the operational balance between MT and NMT. The instrument is based on a partial restriction approach of motorised transport (MT) and NMT, structured on the notion of functional hierarchy approach, and distributes/prioritises MT and NMT such that functional needs of the network category is best complemented. The planning instrument based on these processes and principles offers a six-level road hierarchy with a different composition of network-governing attributes and modal priority, for the current Dhaka transport network, in order to facilitate efficient integration of NMT with MT. A case study application of the instrument on a small transport network of Dhaka also demonstrates the utility, flexibility and adoptability of the instrument in logically allocating corridors with particular positions in the road hierarchy paradigm. Although the tool is useful in enabling balanced distribution of NMPT with MT at different network levels, further investigation is required with reference to detailed modal variations, scales and locations of a network to further generalise the framework application.
Resumo:
In Victoria, as in other jurisdictions, there is very little research on the potential risks and benefits of lane filtering by motorcyclists, particularly from a road safety perspective. This on-road proof of concept study aimed to investigate whether and how lane filtering influences motorcycle rider situation awareness at intersections and to address factors that need to be considered for the design of a larger study in this area. Situation awareness refers to road users’ understanding of ‘what is going on’ around them and is a critical commodity for safe performance. Twenty-five experienced motorcyclists rode their own instrumented motorcycle around an urban test route in Melbourne whilst providing verbal protocols. Lane filtering occurred in 27% of 43 possible instances in which there were one or more vehicles in the traffic queue and the traffic lights were red on approach to the intersection. A network analysis procedure, based on the verbal protocols provided by motorcyclists, was used to identify differences in motorcyclist situation awareness between filtering and non-filtering events. Although similarities in situation awareness across filtering and nonfiltering motorcyclists were found, the analysis revealed some differences. For example, filtering motorcyclists placed more emphasis on the timing of the traffic light sequence and on their own actions when moving to the front of the traffic queue, whilst non-filtering motorcyclists paid greater attention to traffic moving through the intersection and approaching from behind. Based on the results of this study, the paper discusses some methodological and theoretical issues to be addressed in a larger study comparing situation awareness between filtering and non-filtering motorcyclists.
Resumo:
We conducted on-road and simulator studies to explore the mechanisms underpinning driver-rider crashes. In Study 1 the verbal protocols of 40 drivers and riders were assessed at intersections as part of a 15km on-road route in Melbourne. Network analysis of the verbal transcripts highlighted key differences in the situation awareness of drivers and riders at intersections. In a further study using a driving simulator we examined in car drivers the influence of acute exposure to motorcyclists. In a 15 min simulated drive, 40 drivers saw either no motorcycles or a high number of motorcycles in the surrounding traffic. In a subsequent 45-60 min drive, drivers were asked to detect motorcycles in traffic. The proportion of motorcycles was manipulated so that there was either a high (120) or low (6) number of motorcycles during the drive. Those drivers exposed to a high number of motorcycles were significantly faster at detecting motorcycles. Fundamentally, the incompatible situation awareness at intersections by drivers and riders underpins the conflicts. Study 2 offers some suggestion for a countermeasure here, although more research around schema and exposure training to support safer interactions is needed.
Resumo:
Macroscopic Fundamental Diagram (MFD) has been proved to exist in large urban road and freeway networks by theoretic method and real data in cities. However hysteresis and scatters have also been found existed both on motorway network and urban road. This paper investigates how the incident variables affect the scatter and shape of the MFD using both the simulated data and the real data collected from the Pacific Motorway M3 in Brisbane, Australia. Three key components of incident are investigated based on the simulated data: incident location, incident duration time and traffic demand. Results based on the simulated data indicate that MFD shape is a property not only of the network itself but also of the incident characteristics variables. MFDs for three types of real incidents (crash, hazard and breakdown) are explored separately. The results based on the empirical data are consistent with the simulated results. The hysteresis phenomenon occurs on both the upstream and the downstream of the incident location, but for opposite hysteresis loops. Gradient of the MFD for the upstream is more than that for the downstream on the incident site, when traffic demand is off peak.
Resumo:
This research aims to develop a reliable density estimation method for signalised arterials based on cumulative counts from upstream and downstream detectors. In order to overcome counting errors associated with urban arterials with mid-link sinks and sources, CUmulative plots and Probe Integration for Travel timE estimation (CUPRITE) is employed for density estimation. The method, by utilizing probe vehicles’ samples, reduces or cancels the counting inconsistencies when vehicles’ conservation is not satisfied within a section. The method is tested in a controlled environment, and the authors demonstrate the effectiveness of CUPRITE for density estimation in a signalised section, and discuss issues associated with the method.
Resumo:
This paper presents a novel framework for the modelling of passenger facilitation in a complex environment. The research is motivated by the challenges in the airport complex system, where there are multiple stakeholders, differing operational objectives and complex interactions and interdependencies between different parts of the airport system. Traditional methods for airport terminal modelling do not explicitly address the need for understanding causal relationships in a dynamic environment. Additionally, existing Bayesian Network (BN) models, which provide a means for capturing causal relationships, only present a static snapshot of a system. A method to integrate a BN complex systems model with stochastic queuing theory is developed based on the properties of the Poisson and Exponential distributions. The resultant Hybrid Queue-based Bayesian Network (HQBN) framework enables the simulation of arbitrary factors, their relationships, and their effects on passenger flow and vice versa. A case study implementation of the framework is demonstrated on the inbound passenger facilitation process at Brisbane International Airport. The predicted outputs of the model, in terms of cumulative passenger flow at intermediary and end points in the inbound process, are found to have an $R^2$ goodness of fit of 0.9994 and 0.9982 respectively over a 10 hour test period. The utility of the framework is demonstrated on a number of usage scenarios including real time monitoring and `what-if' analysis. This framework provides the ability to analyse and simulate a dynamic complex system, and can be applied to other socio-technical systems such as hospitals.
Resumo:
In this paper we explore the relationship between monthly random breath testing (RBT) rates (per 1000 licensed drivers) and alcohol-related traffic crash (ARTC) rates over time, across two Australian states: Queensland and Western Australia. We analyse the RBT, ARTC and licensed driver rates across 12 years; however, due to administrative restrictions, we model ARTC rates against RBT rates for the period July 2004 to June 2009. The Queensland data reveals that the monthly ARTC rate is almost flat over the five year period. Based on the results of the analysis, an average of 5.5 ARTCs per 100,000 licensed drivers are observed across the study period. For the same period, the monthly rate of RBTs per 1000 licensed drivers is observed to be decreasing across the study with the results of the analysis revealing no significant variations in the data. The comparison between Western Australia and Queensland shows that Queensland's ARTC monthly percent change (MPC) is 0.014 compared to the MPC of 0.47 for Western Australia. While Queensland maintains a relatively flat ARTC rate, the ARTC rate in Western Australia is increasing. Our analysis reveals an inverse relationship between ARTC RBT rates, that for every 10% increase in the percentage of RBTs to licensed driver there is a 0.15 decrease in the rate of ARTCs per 100,000 licenced drivers. Moreover, in Western Australia, if the 2011 ratio of 1:2 (RBTs to annual number of licensed drivers) were to double to a ratio of 1:1, we estimate the number of monthly ARTCs would reduce by approximately 15. Based on these findings we believe that as the number of RBTs conducted increases the number of drivers willing to risk being detected for drinking driving decreases, because the perceived risk of being detected is considered greater. This is turn results in the number of ARTCs diminishing. The results of this study provide an important evidence base for policy decisions for RBT operations.