957 resultados para Nematic Drops
Resumo:
Results of studies of the static and dynamic dielectric properties in rod-like 4-n-octyloxy-4'-cyanobiphenyl (8OCB) with isotropic (I)–nematic (N)–smectic A (SmA)–crystal (Cr) mesomorphism, combined with measurements of the low-frequency nonlinear dielectric effect and heat capacity are presented. The analysis is supported by the derivative-based and distortion-sensitive transformation of experimental data. Evidence for the I–N and N–SmA pretransitional anomalies, indicating the influence of tricritical behavior, is shown. It has also been found that neither the N phase nor the SmA phase are uniform and hallmarks of fluid–fluid crossovers can be detected. The dynamics, tested via the evolution of the primary relaxation time, is clearly non-Arrhenius and described via τ(T) = τc(T−TC)−phgr. In the immediate vicinity of the I–N transition a novel anomaly has been found: Δτ ∝ 1/(T − T*), where T* is the temperature of the virtual continuous transition and Δτ is the excess over the 'background behavior'. Experimental results are confronted with the comprehensive Landau–de Gennes theory based modeling.
Resumo:
Glaucoma is a collection of diseases characterized by multifactorial progressive changes leading to visual field loss and optic neuropathy most frequently due to elevated intraocular pressure (IOP). The goal of treatment is the lowering of the IOP to prevent additional optic nerve damage. Treatment usually begins with topical pharmacological agents as monotherapy, progresses to combination therapy with agents from up to 4 different classes of IOP-lowering medications, and then proceeds to laser or incisional surgical modalities for refractory cases. The fixed combination therapy with the carbonic anhydrase inhibitor dorzolamide hydrochloride 2% and the beta blocker timolol maleate 0.5% is now available in a generic formulation for the treatment of patients who have not responded sufficiently to monotherapy with beta adrenergic blockers. In pre- and postmarketing clinical studies, the fixed combination dorzolamide-timolol has been shown to be safe and efficacious, and well tolerated by patients. The fixed combination dorzolamide-timolol is convenient for patients, reduces their dosing regimen with the goal of increasing their compliance, reduces the effects of "washout" when instilling multiple drops, and reduces the preservative burden by reducing the number of drops administered per day.
Resumo:
UPTAKE AND METABOLISM OF 5’-AMP IN THE ERYTHROCYTE PLAY KEY ROLES IN THE 5’-AMP INDUCED MODEL OF DEEP HYPOMETABOLISM Publication No. ________ Isadora Susan Daniels, B.A. Supervisory Professor: Cheng Chi Lee, Ph.D. Mechanisms that initiate and control the natural hypometabolic states of mammals are poorly understood. The laboratory developed a model of deep hypometabolism (DH) initiated by uptake of 5’-adenosine monophosphate (5’-AMP) into erythrocytes. Mice enter DH when given a high dose of 5’-AMP and the body cools readily. Influx of 5’-AMP appears to inhibit thermoregulatory control. In a 15°C environment, mice injected with 5’-AMP (0.5 mg/gw) enter a Phase I response in which oxygen consumption (VO2) drops rapidly to 1/3rd of euthermic levels. The Phase I response appears independent of body temperature (Tb). This is followed by gradual body temperature decline that correlates with VO2 decline, called Phase II response. Within 90 minutes, mouse Tb approaches 15°C, and VO2 is 1/10th of normal. Mice can remain several hours in this state, before gradually and safely recovering. The DH state translates to other mammalian species. Our studies show uptake and metabolism of 5’-AMP in erythrocytes causes biochemical changes that initiate DH. Increased AMP shifts the adenylate equilibrium toward ADP formation, consequently decreasing intracellular ATP. In turn, glycolysis slows, indicated by increased glucose and decreased lactate. 2,3-bisphosphoglycerate levels rise, allosterically reducing oxygen affinity for hemoglobin, and deoxyhemoglobin rises. Less oxygen transport to tissues likely triggers the DH model. The major intracellular pathway for AMP catabolism is catalyzed by AMP deaminase (AMPD). Multiple AMPD isozymes are expressed in various tissues, but erythrocytes only have AMPD3. Mice lacking AMPD3 were created to study control of the DH model, specifically in erythrocytes. Telemetric measurements demonstrate lower Tb and difficulty maintaining Tb under moderate metabolic stress. A more dramatic response to lower dose of 5’-AMP suggests AMPD activity in the erythrocyte plays an important role in control of the DH model. Analysis of adenylates in erythrocyte lysate shows 3-fold higher levels of ATP and ADP but similar AMP levels to wild-type. Taken together, results indicate alterations in energy status of erythrocytes can induce a hypometabolic state. AMPD3 control of AMP catabolism is important in controlling the DH model. Genetically reducing AMP catabolism in erythrocytes causes a phenotype of lower Tb and compromised ability to maintain temperature homeostasis.
Resumo:
Chronic lymphocytic leukemia (CLL) is an incurable disease characterized by the accumulation of terminally differentiated, mature B cells that do not progress beyond the G1 stage of cell cycle, suggesting that these cells possess intrinsic defects in apoptosis. Treatment relies heavily on chemotherapy (primarily nucleoside analogs and glucocorticoids) that may initially be effective in patients, but ultimately give rise to refractory, untreatable disease. The purpose of this study was to determine whether key components of the apoptotic machinery were intact in CLL lymphocytes, especially in patients refractory to therapy. ^ Activation of proteases has been shown to be at the core of the apoptotic pathway and this work demonstrates that protease activation is required for glucocorticoid and nucleoside analog-induced apoptosis in CLL cells. Inhibitors of serine proteases as well as caspase inhibitors blocked induced DNA fragmentation, and a peptide inhibitor of the nuclear scaffold (NS) protease completely suppressed both induced and spontaneous apoptosis. However, the NS protease inhibitor actually promoted several pro-apoptotic events, such as caspase activation, exposure of surface phosphatidylserine, and loss of mitochondrial membrane potential. These results suggested that the NS protease may interact with the apoptotic program in CLL cells at two separate points. ^ In order to further investigate the role of the NS protease in CLL, patient isolates were treated with proteasome inhibitors because of previous results suggesting that the ISIS protease might be a β subunit of the proteasome. Proteasome inhibitors induced massive DNA fragmentation in every patient tested, even in those resistant to the effects of glucocorticoid and nucleoside analogs in vitro. Several other features of apoptosis were also promoted by the proteasome inhibitor, including mitochondrial alterations such as release of cytochrome c and drops in mitochondrial membrane potential. Proteasome inhibitor-induced apoptosis was associated with inhibition of NFκB, a proteasome-regulated transcription factor that has been implicated in the suppression of apoptosis in a number of systems. The NS protease inhibitor also caused a decrease in active NFκB, suggesting that the proapoptotic effects of this agent might be due to depletion of NFκB. ^ Given these findings, the role of NFκB, in conferring survival in CLL was investigated. Glucocorticoid hormone treatment was shown to cause decreases in the activity of the transcription factor, while phorbol dibutyrate, which blocks glucocorticoid-induced DNA fragmentation, was capable of upregulating NFκB. Compellingly, introduction of an undegradable form of the constitutive NFκB inhibitor, IκB, caused DNA fragmentation in several patient isolates, some of which were resistant to glucocorticoid in vitro. Transcription of anti-apoptotic proteins by NFκB was postulated to be responsible for its effects on survival, but Bcl-2 levels did not fluctuate with glucocorticoid or proteasome inhibitor treatment. ^ The in vitro values generated from these studies were organized into a database containing numbers for over 250 patients. Correlation of relevant clinical parameters revealed that levels of spontaneous apoptosis in vitro differ significantly between Rai stages. Importantly, in vitro resistance to nucleoside analogs or glucocorticoids predicted resistance to chemotherapy in vivo, and inability to achieve remission. ^
Resumo:
We use a fracture mechanics model to study subcritical propagation and coalescence of single and collinear oil-filled cracks during conversion of kerogen to oil. The subcritical propagation distance, propagation duration, crack coalescence and excess oil pressure in the crack are determined using the fracture mechanics model together with the kinetics of kerogen-oil transformation. The propagation duration for the single crack is governed by the transformation kinetics whereas the propagation duration for the multiple collinear cracks may vary by two orders of magnitude depending on initial crack spacing. A large amount of kerogen (>90%) remains unconverted when the collinear cracks coalesce and the new, larger cracks resulting from coalescence will continue to propagate with continued kerogen-oil conversion. The excess oil pressure on the crack surfaces drops precipitously when the collinear cracks are about to coalesce, and crack propagation duration and oil pressure on the crack surfaces are strongly dependent on temperature. Citation: Jin, Z.-H., S. E. Johnson, and Z. Q. Fan (2010), Subcritical propagation and coalescence of oil-filled cracks: Getting the oil out of low-permeability source rocks, Geophys. Res. Lett., 37, L01305, doi:10.1029/2009GL041576.
Resumo:
This dissertation presents the concept of Deliberative Transformative Moment and the instrument to identify it, in a further attempt to bridge the gap between deliberation theory and practice. A transformative moment in the deliberative process occurs when the level of deliberation is either lifted from low to high or drops from high to low. In order to identify such a moment, one has to look at the context and dynamics of the group discussion. This broadening of the unit of analysis is a big difference from other existing instruments to measure the level of deliberation, such as the Deliberative Quality Index –DQI, which focuses primarily on the individual speech acts. Consistent with the theoretical framework of consociational and deliberation approaches, the observed discussions took place among two deeply divided groups, Colombian ex-combatants from both the extreme left and the extreme right. Moving beyond a pure Habermasian perspective, this study finds that besides pure rational arguments, there are some contexts in which personal stories, jokes and self-interests, acting as justification of arguments, have either a positive or a negative impact on deliberative transformative moments. Although this research has a strongly qualitative orientation, reliability tests scored high, giving it strength as a reliable and valid research method that shedding some light on the sort of speech acts that enhance deliberation and those that detract from it.
Resumo:
Liquid crystals (LCs) represent a challenging group of materials for direct transmission electron microscopy (TEM) studies due to the complications in specimen preparation and the severe radiation damage. In this paper, we summarize a series of specimen preparation methods, including thin film and cryo-sectioning approaches, as a comprehensive toolset enabling high-resolution direct cryo-TEM observation of a broad range of LCs. We also present comparative analysis using cryo-TEM and replica freeze-fracture TEM on both thermotropic and lyotropic LCs. In addition to the revisits of previous practices, some new concepts are introduced, e.g., suspended thermotropic LC thin films, combined high-pressure freezing and cryo-sectioning of lyotropic LCs, and the complementary applications of direct TEM and indirect replica TEM techniques. The significance of subnanometer resolution cryo-TEM observation is demonstrated in a few important issues in LC studies, including providing direct evidences for the existence of nanoscale smectic domains in nematic bent-core thermotropic LCs, comprehensive understanding of the twist-bend nematic phase, and probing the packing of columnar aggregates in lyotropic chromonic LCs. Direct TEM observation opens ways to a variety of TEM techniques, suggesting that TEM (replica, cryo, and in situ techniques), in general, may be a promising part of the solution to the lack of effective structural probe at the molecular scale in LC studies. Microsc. Res. Tech. 77:754-772, 2014. © 2014 Wiley Periodicals, Inc.
Resumo:
PURPOSE To assess the usefulness of cone beam CT (CBCT) for dacryocystography (DCG) using either direct syringing or passive application of contrast medium. METHODS Ten consecutive patients with epiphora who had CBCT-DCG in a sitting position were retrospectively analyzed. CBCT-DCGs were performed using 2 techniques: direct syringing with contrast medium or using the passive technique, where patients received 3 drops of contrast medium into the conjunctival sac before CBCT-DCG. Clinical and radiologic diagnoses were compared for both groups. RESULTS The 10 patients (men = 3) had a mean age of 63.2 years. Both techniques proved to be simple procedures with good delineation of the bone, soft tissue, and the contrast medium in the lacrimal system. No side effects were noted. CONCLUSIONS CBCT-DCG is a useful alternative to determine the localization of stenosis in patients with chronic epiphora.
Resumo:
The user experience on watching live video se- quences transmitted over a Flying Ad-Hoc Networks (FANETs) must be considered to drop packets in overloaded queues, in scenarios with high buffer overflow and packet loss rate. In this paper, we introduce a context-aware adaptation mechanism to manage overloaded buffers. More specifically, we propose a utility function to compute the dropping probability of each packet in overloaded queues based on video context information, such as frame importance, packet deadline, and sensing relevance. In this way, the proposed mechanism drops the packet that adds the minimum video distortion. Simulation evaluation shows that the proposed adaptation mechanism provides real-time multimedia dissemination with QoE support in a multi-hop, multi-flow, and mobile network environments.
Resumo:
We present the observations of energetic neutral atoms (ENAs) produced at the lunar surface in the Earth's magnetotail. When the Moon was located in the terrestrial plasma sheet, Chandrayaan-1 Energetic Neutrals Analyzer (CENA) detected hydrogen ENAs from the Moon. Analysis of the data from CENA together with the Solar Wind Monitor (SWIM) onboard Chandrayaan-1 reveals the characteristic energy of the observed ENA energy spectrum (the e-folding energy of the distribution function) ∼100 eV and the ENA backscattering ratio (defined as the ratio of upward ENA flux to downward proton flux) <∼0.1. These characteristics are similar to those of the backscattered ENAs in the solar wind, suggesting that CENA detected plasma sheet particles backscattered as ENAs from the lunar surface. The observed ENA backscattering ratio in the plasma sheet exhibits no significant difference in the Southern Hemisphere, where a large and strong magnetized region exists, compared with that in the Northern Hemisphere. This is contrary to the CENA observations in the solar wind, when the backscattering ratio drops by ∼50% in the Southern Hemisphere. Our analysis and test particle simulations suggest that magnetic shielding of the lunar surface in the plasma sheet is less effective than in the solar wind due to the broad velocity distributions of the plasma sheet protons.
Resumo:
Small-intestine adhesiolysis can be very time consuming and may be associated with bowel wall damage. The risk for injuries to the small or large bowel resulting in increased morbidity and costs is considerable. Both efficient and gentle dissection of adhesions is important in order to avoid intraoperative perforation or, worse, postoperative intestinal leaks. We present a technique using drops of body-warm isotonic saline solution to create an edematous swelling of the adhesions. This procedure not only protects the bowel from cooling and drying, but also simplifies the dissection and, thus, lowers the risk of intestinal lesions.
Resumo:
Purpose: Cardiomyocytes are terminally differentiated cells in the adult heart and ischemia and cardiotoxic compounds can lead to cell death and irreversible decline of cardiac function. As testing platforms, isolated organs and primary cells from rodents have been the standard in research and toxicology, but there is a need for better models that more faithfully recapitulate native human biology. Hence, a new in vitro model comprising the advantages of 3D cell culture and the availability of induced pluripotent stem cells (iPSC) from human origin was developed and characterized. Methods: Human cardiomyocytes (CMs) derived from induced pluripotent stem cells (iPSCs) were studied in standard 2D culture and as cardiac microtissues (MTs) formed in hanging drops. 2D cultures were examined using immunofluorescence microscopy and Western blotting while the cardiac MTs were subjected to immunofluorescence, contractility, and pharmacological investigations. Results: iPSC-derived CMs in 2D culture showed well-formed myofibrils, cell-cell contacts positive for connexin-43, and other typical cardiac proteins. The cells reacted to pro-hypertrophic growth factors with a substantial increase in myofibrils and sarcomeric proteins. In hanging drop cultures, iPSC-derived cardiomyocytes formed spheroidal MTs within 4 days showing a homogeneous tissue structure with well-developed myofibrils extending throughout the whole spheroid without a necrotic core. MTs showed spontaneous contractions for more than 4 weeks that were recorded by optical motion tracking, sensitive to temperature, and responsive to electrical pacing. Contractile pharmacology was tested with several agents known to modulate cardiac rate and viability. Calcium-transients underlay the contractile activity and were also responsive to electrical stimulation, caffeine-induced Ca2+-release, extracellular calcium levels. Conclusions: 3D culture using iPSC-derived human cardiomyocytes provides an organoid human-based cellular platform that is free of necrosis and recapitulates vital cardiac functionality, thereby providing new and promising relevant model for the evaluation and development of new therapies and detection of cardiotoxicity.
Resumo:
Purpose To investigate the effect of topical glucose on visual parameters in individuals with primary open-angle glaucoma (POAG). Design Double-blind, randomized, crossover study. Participants Nondiabetic pseudophakic patients with definite POAG were recruited; 29 eyes of 16 individuals participated in study 1. A follow-up study (study 2) included 14 eyes of 7 individuals. Intervention Eyes were randomly allocated to receive 50% glucose or saline eye drops every 5 minutes for 60 minutes. Main Outcome Measures The contrast sensitivity and best-corrected logarithm of the minimum angle of resolution (logMAR). Results The 50% glucose reached the vitreous in pseudophakic but not phakic individuals. Glucose significantly improved the mean contrast sensitivity at 12 cycles/degree compared with 0.9% saline by 0.26 log units (95% confidence interval [CI], 0.13–0.38; P < 0.001) and 0.40 log units (95% CI, 0.17–0.60; P < 0.001) in the follow-up study. The intraocular pressure, refraction, and central corneal thickness were not affected by glucose; age was not a significant predictor of the response. Conclusions Topical glucose temporarily improves psychophysical visual parameters in some individuals with POAG, suggesting that neuronal energy substrate delivery to the vitreous reservoir may recover function of “sick” retinal neurons.
Resumo:
OBJECTIVE: New routes for cell transplantation into the brain need to be explored as intracerebral or intrathecal applications have a high risk to cause damage to the central nervous system. It has been hypothesized that transnasally administrated cells bypass the blood-brain barrier and migrate along the olfactory neural route into the brain and cerebrospinal fluid. Our goal is to confirm this hypothesis by transnasally administrating Wharton’s Jelly mesenchymal stem cells (WJ-MSC) and neural progenitor cells (NPC) to perinatal rats in a model of hypoxic-ischemic brain injury. STUDY DESIGN: Four-day-old Wistar rat pups, previously brain-damaged by combined hypoxic-ischemic and inflammatory insult, either received WJ-MSC or green fluorescent protein-expressing NPC: The heads of the rat pups were immobilized and 3 ml drops containing the cells (50’000 cells/ml) were placed on one nostril allowing it to be snorted. This procedure was repeated twice, alternating right to left nostril with an interval of one minute between administrations. The rat pups received a total of 600’000 cells. Animals were sacrificed 24h, 48h or 7 days after the application of the cells. Fixed brains were collected, embedded in paraffin and sectioned. RESULTS: Transplanted cells were found in the layers of the olfactory bulb (OB), the cerebral cortex, thalamus and the hippocampus. The amount of cells was highest in the OB. Animals treated with transnasally delivered stem cells showed significantly decreased gliosis compared to untreated animals. CONCLUSION: Our data show that transnasal delivery of WJ-MSC and NPC to the newborn brain after perinatal brain damage is successful. The cells not only migrate the brain, but also decrease scar formation and improve neurogenesis. Therefore, the non-invasive intranasal delivery of stem cells to the brain may be the preferred method for stem cell treatment of perinatal brain damage and should be preferred in future clinical trials.
Resumo:
Expanding populations incur a mutation burden – the so-called expansion load. Previous studies of expansion load have focused on codominant mutations. An important consequence of this assumption is that expansion load stems exclusively from the accumulation of new mutations occurring in individuals living at the wave front. Using individual-based simulations, we study here the dynamics of standing genetic variation at the front of expansions, and its consequences on mean fitness if mutations are recessive. We find that deleterious genetic diversity is quickly lost at the front of the expansion, but the loss of deleterious mutations at some loci is compensated by an increase of their frequencies at other loci. The frequency of deleterious homozygotes therefore increases along the expansion axis, whereas the average number of deleterious mutations per individual remains nearly constant across the species range. This reveals two important differences to codominant models: (i) mean fitness at the front of the expansion drops much faster if mutations are recessive, and (ii) mutation load can increase during the expansion even if the total number of deleterious mutations per individual remains constant. We use our model to make predictions about the shape of the site frequency spectrum at the front of range expansion, and about correlations between heterozygosity and fitness in different parts of the species range. Importantly, these predictions provide opportunities to empirically validate our theoretical results. We discuss our findings in the light of recent results on the distribution of deleterious genetic variation across human populations and link them to empirical results on the correlation of heterozygosity and fitness found in many natural range expansions.