950 resultados para Natural sciences and mathematics
Resumo:
We discuss the development and performance of a low-power sensor node (hardware, software and algorithms) that autonomously controls the sampling interval of a suite of sensors based on local state estimates and future predictions of water flow. The problem is motivated by the need to accurately reconstruct abrupt state changes in urban watersheds and stormwater systems. Presently, the detection of these events is limited by the temporal resolution of sensor data. It is often infeasible, however, to increase measurement frequency due to energy and sampling constraints. This is particularly true for real-time water quality measurements, where sampling frequency is limited by reagent availability, sensor power consumption, and, in the case of automated samplers, the number of available sample containers. These constraints pose a significant barrier to the ubiquitous and cost effective instrumentation of large hydraulic and hydrologic systems. Each of our sensor nodes is equipped with a low-power microcontroller and a wireless module to take advantage of urban cellular coverage. The node persistently updates a local, embedded model of flow conditions while IP-connectivity permits each node to continually query public weather servers for hourly precipitation forecasts. The sampling frequency is then adjusted to increase the likelihood of capturing abrupt changes in a sensor signal, such as the rise in the hydrograph – an event that is often difficult to capture through traditional sampling techniques. Our architecture forms an embedded processing chain, leveraging local computational resources to assess uncertainty by analyzing data as it is collected. A network is presently being deployed in an urban watershed in Michigan and initial results indicate that the system accurately reconstructs signals of interest while significantly reducing energy consumption and the use of sampling resources. We also expand our analysis by discussing the role of this approach for the efficient real-time measurement of stormwater systems.
Numerical Simulation Of Sediment Transport And Bedmorphology Around A Hydraulic Structure On A River
Resumo:
Scour around hydraulic structures is a critical problem in hydraulic engineering. Under prediction of scour depth may lead to costly failures of the structure, while over prediction might result in unnecessary costs. Unfortunately, up-to-date empirical scour prediction formulas are based on laboratory experiments that are not always able to reproduce field conditions due to complicated geometry of rivers and temporal and spatial scales of a physical model. However, computational fluid dynamics (CFD) tools can perform using real field dimensions and operating conditions to predict sediment scour around hydraulic structures. In Korea, after completing the Four Major Rivers Restoration Project, several new weirs have been built across Han, Nakdong, Geum and Yeongsan Rivers. Consequently, sediment deposition and bed erosion around such structures have became a major issue in these four rivers. In this study, an application of an open source CFD software package, the TELEMAC-MASCARET, to simulate sediment transport and bed morphology around Gangjeong weir, which is the largest multipurpose weir built on Nakdong River. A real bathymetry of the river and a geometry of the weir have been implemented into the numerical model. The numerical simulation is carried out with a real hydrograph at the upstream boundary. The bedmorphology obtained from the numerical results has been validated against field observation data, and a maximum of simulated scour depth is compared with the results obtained by empirical formulas of Hoffmans. Agreement between numerical computations, observed data and empirical formulas is judged to be satisfactory on all major comparisons. The outcome of this study does not only point out the locations where deposition and erosion might take place depending on the weir gate operation, but also analyzes the mechanism of formation and evolution of scour holes after the weir gates.
Resumo:
Vertical stream bed erosion has been studied routinely and its modeling is getting widespread acceptance. The same cannot be said with lateral stream bank erosion since its measurement or numerical modeling is very challenging. Bank erosion, however, can be important to channel morphology. It may contribute significantly to the overall sediment budget of a stream, is a leading cause of channel migration, and is the cause of major channel maintenance. However, combined vertical and lateral channel evolution is seldom addressed. In this study, a new geofluival numerical model is developed to simulate combined vertical and lateral channel evolution. Vertical erosion is predicted with a 2D depth-averaged model SRH-2D, while lateral erosion is simulated with a linear retreat bank erosion model developed in this study. SRH-2D and the bank erosion model are coupled together both spatially and temporally through a common mesh and the same time advancement. The new geofluvial model is first tested and verified using laboratory meander channels; good agreement are obtained between predicted bank retreat and measured data. The model is then applied to a 16-kilometer reach of Chosui River, Taiwan. Vertical and lateral channel evolution during a three-year period (2004 to 2007) is simulated and results are compared with the field data. It is shown that the geofluvial model correctly captures all major erosion and deposition patterns. The new model is shown to be useful for identifying potential erosion sites and providing information for river maintenance planning.
Resumo:
Climate change has resulted in substantial variations in annual extreme rainfall quantiles in different durations and return periods. Predicting the future changes in extreme rainfall quantiles is essential for various water resources design, assessment, and decision making purposes. Current Predictions of future rainfall extremes, however, exhibit large uncertainties. According to extreme value theory, rainfall extremes are rather random variables, with changing distributions around different return periods; therefore there are uncertainties even under current climate conditions. Regarding future condition, our large-scale knowledge is obtained using global climate models, forced with certain emission scenarios. There are widely known deficiencies with climate models, particularly with respect to precipitation projections. There is also recognition of the limitations of emission scenarios in representing the future global change. Apart from these large-scale uncertainties, the downscaling methods also add uncertainty into estimates of future extreme rainfall when they convert the larger-scale projections into local scale. The aim of this research is to address these uncertainties in future projections of extreme rainfall of different durations and return periods. We plugged 3 emission scenarios with 2 global climate models and used LARS-WG, a well-known weather generator, to stochastically downscale daily climate models’ projections for the city of Saskatoon, Canada, by 2100. The downscaled projections were further disaggregated into hourly resolution using our new stochastic and non-parametric rainfall disaggregator. The extreme rainfall quantiles can be consequently identified for different durations (1-hour, 2-hour, 4-hour, 6-hour, 12-hour, 18-hour and 24-hour) and return periods (2-year, 10-year, 25-year, 50-year, 100-year) using Generalized Extreme Value (GEV) distribution. By providing multiple realizations of future rainfall, we attempt to measure the extent of total predictive uncertainty, which is contributed by climate models, emission scenarios, and downscaling/disaggregation procedures. The results show different proportions of these contributors in different durations and return periods.
Resumo:
While the simulation of flood risks originating from the overtopping of river banks is well covered within continuously evaluated programs to improve flood protection measures, flash flooding is not. Flash floods are triggered by short, local thunderstorm cells with high precipitation intensities. Small catchments have short response times and flow paths and convective thunder cells may result in potential flooding of endangered settlements. Assessing local flooding and pathways of flood requires a detailed hydraulic simulation of the surface runoff. Hydrological models usually do not incorporate surface runoff at this detailedness but rather empirical equations are applied for runoff detention. In return 2D hydrodynamic models usually do not allow distributed rainfall as input nor are any types of soil/surface interaction implemented as in hydrological models. Considering several cases of local flash flooding during the last years the issue emerged for practical reasons but as well as research topics to closing the model gap between distributed rainfall and distributed runoff formation. Therefore, a 2D hydrodynamic model, depth-averaged flow equations using the finite volume discretization, was extended to accept direct rainfall enabling to simulate the associated runoff formation. The model itself is used as numerical engine, rainfall is introduced via the modification of waterlevels at fixed time intervals. The paper not only deals with the general application of the software, but intends to test the numerical stability and reliability of simulation results. The performed tests are made using different artificial as well as measured rainfall series as input. Key parameters of the simulation such as losses, roughness or time intervals for water level manipulations are tested regarding their impact on the stability.
Resumo:
The Short-term Water Information and Forecasting Tools (SWIFT) is a suite of tools for flood and short-term streamflow forecasting, consisting of a collection of hydrologic model components and utilities. Catchments are modeled using conceptual subareas and a node-link structure for channel routing. The tools comprise modules for calibration, model state updating, output error correction, ensemble runs and data assimilation. Given the combinatorial nature of the modelling experiments and the sub-daily time steps typically used for simulations, the volume of model configurations and time series data is substantial and its management is not trivial. SWIFT is currently used mostly for research purposes but has also been used operationally, with intersecting but significantly different requirements. Early versions of SWIFT used mostly ad-hoc text files handled via Fortran code, with limited use of netCDF for time series data. The configuration and data handling modules have since been redesigned. The model configuration now follows a design where the data model is decoupled from the on-disk persistence mechanism. For research purposes the preferred on-disk format is JSON, to leverage numerous software libraries in a variety of languages, while retaining the legacy option of custom tab-separated text formats when it is a preferred access arrangement for the researcher. By decoupling data model and data persistence, it is much easier to interchangeably use for instance relational databases to provide stricter provenance and audit trail capabilities in an operational flood forecasting context. For the time series data, given the volume and required throughput, text based formats are usually inadequate. A schema derived from CF conventions has been designed to efficiently handle time series for SWIFT.
Resumo:
In the last years extreme hydrometeorological phenomena have increased in number and intensity affecting the inhabitants of various regions, an example of these effects are the central basins of the Gulf of Mexico (CBGM) that they have been affected by 55.2% with floods and especially the state of Veracruz (1999-2013), leaving economic, social and environmental losses. Mexico currently lacks sufficient hydrological studies for the measurement of volumes in rivers, since is convenient to create a hydrological model (HM) suited to the quality and quantity of the geographic and climatic information that is reliable and affordable. Therefore this research compares the semi-distributed hydrological model (SHM) and the global hydrological model (GHM), with respect to the volumes of runoff and achieve to predict flood areas, furthermore, were analyzed extreme hydrometeorological phenomena in the CBGM, by modeling the Hydrologic Modeling System (HEC-HMS) which is a SHM and the Modèle Hydrologique Simplifié à I'Extrême (MOHYSE) which is a GHM, to evaluate the results and compare which model is suitable for tropical conditions to propose public policies for integrated basins management and flood prevention. Thus it was determined the temporal and spatial framework of the analyzed basins according to hurricanes and floods. It were developed the SHM and GHM models, which were calibrated, validated and compared the results to identify the sensitivity to the real model. It was concluded that both models conform to tropical conditions of the CBGM, having MOHYSE further approximation to the real model. Worth mentioning that in Mexico there is not enough information, besides there are no records of MOHYSE use in Mexico, so it can be a useful tool for determining runoff volumes. Finally, with the SHM and the GHM were generated climate change scenarios to develop risk studies creating a risk map for urban planning, agro-hydrological and territorial organization.
Resumo:
Natural riversare consisting of various networks as junction andstreams. And sediment and erosion are occurred by specific stream condition. When flood season,large discharge flew in the river and river bed changed by high flow velocity. Especially junction area’s flow characteristics are very complex. The purpose of this study is to analyze the flow characteristics in channel junction, which are most influenced by large discharge like flooding and input water from tributary. We investigate the flow characteristics by using hydrodynamics and transport module in MIKE 3 FM. MIKE 3 FM model was helpful tool to analysis 3D hydrodynamics, erosion and sediment effect from channel bed. We analyze flow characteristics at channel junction. Also we consider hydraulic structures like a bridge pier which is influencing flow characteristics like a flow velocity, water level, erosion and scour depth in channel bed. In the model, we controlled discharge condition according to Froude Number and reflect various grain diameter size and flow ratio change in main stream and tributary. In the result, flow velocity, water level, erosion and sediment depth are analyzed. Additionally, we suggest a these result relationship with equations. This study will help the understand flow characteristics and influence of hydraulic structure in channel junction. Acknowledgments This research was supported by a grant (12-TI-C01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.
Resumo:
Due to the increase in water demand and hydropower energy, it is getting more important to operate hydraulic structures in an efficient manner while sustaining multiple demands. Especially, companies, governmental agencies, consultant offices require effective, practical integrated tools and decision support frameworks to operate reservoirs, cascades of run-of-river plants and related elements such as canals by merging hydrological and reservoir simulation/optimization models with various numerical weather predictions, radar and satellite data. The model performance is highly related with the streamflow forecast, related uncertainty and its consideration in the decision making. While deterministic weather predictions and its corresponding streamflow forecasts directly restrict the manager to single deterministic trajectories, probabilistic forecasts can be a key solution by including uncertainty in flow forecast scenarios for dam operation. The objective of this study is to compare deterministic and probabilistic streamflow forecasts on an earlier developed basin/reservoir model for short term reservoir management. The study is applied to the Yuvacık Reservoir and its upstream basin which is the main water supply of Kocaeli City located in the northwestern part of Turkey. The reservoir represents a typical example by its limited capacity, downstream channel restrictions and high snowmelt potential. Mesoscale Model 5 and Ensemble Prediction System data are used as a main input and the flow forecasts are done for 2012 year using HEC-HMS. Hydrometeorological rule-based reservoir simulation model is accomplished with HEC-ResSim and integrated with forecasts. Since EPS based hydrological model produce a large number of equal probable scenarios, it will indicate how uncertainty spreads in the future. Thus, it will provide risk ranges in terms of spillway discharges and reservoir level for operator when it is compared with deterministic approach. The framework is fully data driven, applicable, useful to the profession and the knowledge can be transferred to other similar reservoir systems.
Resumo:
The Enriquillo and Azuei are saltwater lakes located in a closed water basin in the southwestern region of the island of La Hispaniola, these have been experiencing dramatic changes in total lake-surface area coverage during the period 1980-2012. The size of Lake Enriquillo presented a surface area of approximately 276 km2 in 1984, gradually decreasing to 172 km2 in 1996. The surface area of the lake reached its lowest point in the satellite observation record in 2004, at 165 km2. Then the recent growth of the lake began reaching its 1984 size by 2006. Based on surface area measurement for June and July 2013, Lake Enriquillo has a surface area of ~358 km2. Sumatra sizes at both ends of the record are 116 km2 in 1984 and 134 km2in 2013, an overall 15.8% increase in 30 years. Determining the causes of lake surface area changes is of extreme importance due to its environmental, social, and economic impacts. The overall goal of this study is to quantify the changing water balance in these lakes and their catchment area using satellite and ground observations and a regional atmospheric-hydrologic modeling approach. Data analyses of environmental variables in the region reflect a hydrological unbalance of the lakes due to changing regional hydro-climatic conditions. Historical data show precipitation, land surface temperature and humidity, and sea surface temperature (SST), increasing over region during the past decades. Salinity levels have also been decreasing by more than 30% from previously reported baseline levels. Here we present a summary of the historical data obtained, new sensors deployed in the sourrounding sierras and the lakes, and the integrated modeling exercises. As well as the challenges of gathering, storing, sharing, and analyzing this large volumen of data in a remote location from such a diverse number of sources.
Resumo:
A three-dimensional time-dependent hydrodynamic and heat transport model of Lake Binaba, a shallow and small dam reservoir in Ghana, emphasizing the simulation of dynamics and thermal structure has been developed. Most numerical studies of temperature dynamics in reservoirs are based on one- or two-dimensional models. These models are not applicable for reservoirs characterized with complex flow pattern and unsteady heat exchange between the atmosphere and water surface. Continuity, momentum and temperature transport equations have been solved. Proper assignment of boundary conditions, especially surface heat fluxes, has been found crucial in simulating the lake’s hydrothermal dynamics. This model is based on the Reynolds Average Navier-Stokes equations, using a Boussinesq approach, with a standard k − ε turbulence closure to solve the flow field. The thermal model includes a heat source term, which takes into account the short wave radiation and also heat convection at the free surface, which is function of air temperatures, wind velocity and stability conditions of atmospheric boundary layer over the water surface. The governing equations of the model have been solved by OpenFOAM; an open source, freely available CFD toolbox. As its core, OpenFOAM has a set of efficient C++ modules that are used to build solvers. It uses collocated, polyhedral numerics that can be applied on unstructured meshes and can be easily extended to run in parallel. A new solver has been developed to solve the hydrothermal model of lake. The simulated temperature was compared against a 15 days field data set. Simulated and measured temperature profiles in the probe locations show reasonable agreement. The model might be able to compute total heat storage of water bodies to estimate evaporation from water surface.
Resumo:
When an accurate hydraulic network model is available, direct modeling techniques are very straightforward and reliable for on-line leakage detection and localization applied to large class of water distribution networks. In general, this type of techniques based on analytical models can be seen as an application of the well-known fault detection and isolation theory for complex industrial systems. Nonetheless, the assumption of single leak scenarios is usually made considering a certain leak size pattern which may not hold in real applications. Upgrading a leak detection and localization method based on a direct modeling approach to handle multiple-leak scenarios can be, on one hand, quite straightforward but, on the other hand, highly computational demanding for large class of water distribution networks given the huge number of potential water loss hotspots. This paper presents a leakage detection and localization method suitable for multiple-leak scenarios and large class of water distribution networks. This method can be seen as an upgrade of the above mentioned method based on a direct modeling approach in which a global search method based on genetic algorithms has been integrated in order to estimate those network water loss hotspots and the size of the leaks. This is an inverse / direct modeling method which tries to take benefit from both approaches: on one hand, the exploration capability of genetic algorithms to estimate network water loss hotspots and the size of the leaks and on the other hand, the straightforwardness and reliability offered by the availability of an accurate hydraulic model to assess those close network areas around the estimated hotspots. The application of the resulting method in a DMA of the Barcelona water distribution network is provided and discussed. The obtained results show that leakage detection and localization under multiple-leak scenarios may be performed efficiently following an easy procedure.
Resumo:
Canada releases over 150 billion litres of untreated and undertreated wastewater into the water environment every year1. To clean up urban wastewater, new Federal Wastewater Systems Effluent Regulations (WSER) on establishing national baseline effluent quality standards that are achievable through secondary wastewater treatment were enacted on July 18, 2012. With respect to the wastewater from the combined sewer overflows (CSO), the Regulations require the municipalities to report the annual quantity and frequency of effluent discharges. The City of Toronto currently has about 300 CSO locations within an area of approximately 16,550 hectares. The total sewer length of the CSO area is about 3,450 km and the number of sewer manholes is about 51,100. A system-wide monitoring of all CSO locations has never been undertaken due to the cost and practicality. Instead, the City has relied on estimation methods and modelling approaches in the past to allow funds that would otherwise be used for monitoring to be applied to the reduction of the impacts of the CSOs. To fulfill the WSER requirements, the City is now undertaking a study in which GIS-based hydrologic and hydraulic modelling is the approach. Results show the usefulness of this for 1) determining the flows contributing to the combined sewer system in the local and trunk sewers for dry weather flow, wet weather flow, and snowmelt conditions; 2) assessing hydraulic grade line and surface water depth in all the local and trunk sewers under heavy rain events; 3) analysis of local and trunk sewer capacities for future growth; and 4) reporting of the annual quantity and frequency of CSOs as per the requirements in the new Regulations. This modelling approach has also allowed funds to be applied toward reducing and ultimately eliminating the adverse impacts of CSOs rather than expending resources on unnecessary and costly monitoring.
Resumo:
New business and technology platforms are required to sustainably manage urban water resources [1,2]. However, any proposed solutions must be cognisant of security, privacy and other factors that may inhibit adoption and hence impact. The FP7 WISDOM project (funded by the European Commission - GA 619795) aims to achieve a step change in water and energy savings via the integration of innovative Information and Communication Technologies (ICT) frameworks to optimize water distribution networks and to enable change in consumer behavior through innovative demand management and adaptive pricing schemes [1,2,3]. The WISDOM concept centres on the integration of water distribution, sensor monitoring and communication systems coupled with semantic modelling (using ontologies, potentially connected to BIM, to serve as intelligent linkages throughout the entire framework) and control capabilities to provide for near real-time management of urban water resources. Fundamental to this framework are the needs and operational requirements of users and stakeholders at domestic, corporate and city levels and this requires the interoperability of a number of demand and operational models, fed with data from diverse sources such as sensor networks and crowsourced information. This has implications regarding the provenance and trustworthiness of such data and how it can be used in not only the understanding of system and user behaviours, but more importantly in the real-time control of such systems. Adaptive and intelligent analytics will be used to produce decision support systems that will drive the ability to increase the variability of both supply and consumption [3]. This in turn paves the way for adaptive pricing incentives and a greater understanding of the water-energy nexus. This integration is complex and uncertain yet being typical of a cyber-physical system, and its relevance transcends the water resource management domain. The WISDOM framework will be modeled and simulated with initial testing at an experimental facility in France (AQUASIM – a full-scale test-bed facility to study sustainable water management), then deployed and evaluated in in two pilots in Cardiff (UK) and La Spezia (Italy). These demonstrators will evaluate the integrated concept providing insight for wider adoption.
Resumo:
Serious games are a category of games which are designed for a specific purpose other than for pure entertainment. It is not a new concept but serious games using real data, coupled with real time modelling and combining model results with social and economic factors opens up a new paradigm for active stakeholder participation. DHI and UNEP-DHI Centre initiated a project called Aqua Republica where a virtual world is developed which allows participants to develop a river basin and visualise the consequences of their decisions. The aim of this project is to raise awareness of the interconnectivity of water and educate on integrated water resources management. Aqua Republica combines a game layer with a water allocation model, MIKE BASIN, to create an interactive, realistic virtual environment where players play the role of a catchment manager of an undeveloped river catchment. Their main objective is to develop the river catchment to be as prosperous as it can be. To achieve that, they will need to generate a good economy in the catchment to provide the funds needed for development, have a steady food supply for their population and enough energy and water for the catchment. Through these actions by the player, a meaningful play is established to engage players and to educate them about the complex relationships between developmental actions in a river basin and the natural environment as well as their consequences. The game layer also consists of a reward system to encourage learning. People can play and replay the game, get rewarded from performing the right principles and penalised from failures in the game. This abstract will explain the concept of the game and how it has been used in a stakeholder participation environment.