936 resultados para Natural Catastrophe, Property Insurance, Loss Distribution, Truncated Data, Ruin Probability
Resumo:
In order to investigate production pathways of methyl iodide and controls on emissions from the surface ocean, a set of repeated in-vitro incubation experiments were performed over an annual cycle in the context of a time-series of in-situ measurements in Kiel Fjord (54.3 N, 10.1E). The incubation experiments revealed a diurnal variation of methyl iodide in samples exposed to natural light, with maxima during day time and losses during night hours. The amplitude of the daily accumulation varied seasonally and was not affected by filtration (0.2µm), consistent with a photochemical pathway for CH3I production. The methyl iodide loss rate during night time correlated with the concentration accumulated during daytime. Daily (24 hour) net production (Pnet) was similar in magnitude between in vitro and in situ mass balances. However, the estimated gross production (Pgross) of methyl iodide ranged from -0.07 to 2.24 pmol/day and were 5 times higher in summer than Pnet calculated from the in-situ study [Shi et al., 2014]. The large excess of Pgross over Pnet revealed by the in-vitro (incubation) experiments in summer is a consequence of large losses of CH3I by as-yet uncharacterized processes (e.g. biological degradation or chemical pathways other than Cl- substitution).
Resumo:
A stable isotope record from the eastern Weddell Sea from 69°S is presented. For the first time, a 250,000-yr record from the Southern Ocean can be correlated in detail to the global isotope stratigraphy. Together with magnetostratigraphic, sedimentological and micropalaeontological data, the stratigraphic control of this record can be extended back to 910,000 yrs B.P. A time scale is constructed by linear interpolation between confirmed stratigraphic data points. The benthic d18O record (Epistominella exigua) reflects global continental ice volume changes during the Brunhes and late Matuyama chrons, whereas the planktonic isotopic record (Neogloboquadrina pachyderma) may be influenced by a meltwater lid caused by the nearby Antarctic ice shelf and icebergs. The worldwide climatic improvement during deglaciations is documented in the eastern Weddell Sea by an increase in production of siliceous plankton followed, with a time lag of approximately 10,000 yrs, by planktonic foraminifera production. Peak values in the difference between planktonic and benthic d13C records, which are 0.5 per mil higher during warm climatic periods than during times with expanded continental ice sheets, also suggest increased surface productivity during interglacials in the Southern Ocean.
Resumo:
In this paper, we summarize data on terrigenous sediment supply in the Kara Sea and its accumulation and spatial and temporal variability during Holocene times. Sedimentological, organic-geochemical, and micropaleontological proxies determined in surface sediments allow to characterize the modern (riverine) terrigenous sediment input. AMS-14C dated sediment cores from the Ob and Yenisei estuaries and the adjacent inner Kara Sea were investigated to determine the terrigenous sediment fluxes and their relationship to paleoenvironmental changes. The variability of sediment fluxes during Holocene times is related to the post-glacial sea-level rise and changes in river discharge and coastal erosion input. Whereas during the late/middle Holocene most of the terrigenous sediments were deposited in the estuaries and the areas directly off the estuaries, huge amounts of sediments accumulated on the Kara Sea shelf farther north during the early Holocene before about 9 cal kyr BP. The maximum accumulation at that time is related to the lowered sea level, increased coastal erosion, and increased river discharge. Based on sediment thickness charts, echograph profiles and sediment core data, we estimate an average Holocene (0-11 cal kyr BP) annual accumulation of 194,106 t/yr of total sediment for the whole Kara Sea. Based on late Holocene (modern) sediment accumulation in the estuaries, probably 12,106 t/yr of riverine suspended matter (i.e. about 30% of the input) may escape the marginal filter on a geological time scale and is transported onto the open Kara Sea shelf. The high-resolution magnetic susceptibility record of a Yenisei core suggests a short-term variability in Siberian climate and river discharge on a frequency of 300-700 yr. This variability may reflect natural cyclic climate variations to be seen in context with the interannual and interdecadal environmental changes recorded in the High Northern Latitudes over the last decades, such as the NAO/AO pattern. A major decrease in MS values starting near 2.5 cal kyr BP, being more pronounced during the last about 2 cal kyr BP, correlates with a cooling trend over Greenland as indicated in the GISP-2 Ice Core, extended sea-ice cover in the North Atlantic, and advances of glaciers in western Norway. Our still preliminary interpretation of the MS variability has to be proven by further MS records from additional cores as well as other high-resolution multi-proxy Arctic climate records.
Resumo:
We sampled leaves from 678 individuals in 21 natural populations (30-36 individuals per population), covering the entire distribution of Euptelea pleiospermum in China.Total DNA was isolated from about 50 mg powdered leaf tissue following the protocol of a DNA extraction kit (Tiangen Biotech Co., LTD., Beijing, China). We used seven fluorescence-labeled microsatellite loci (EP036, EP059, EP081, EP087, EP091, EP278 and EP294; Zhang et al., 2008) to genotype our 678 DNA samples.
Resumo:
The continuous plankton recorder (CPR) survey is an upper layer plankton monitoring program that has regularly collected samples, at monthly intervals, in the North Atlantic and adjacent seas since 1946. Water from approximately 6 m depth enters the CPR through a small aperture at the front of the sampler and travels down a tunnel where it passes through a silk filtering mesh of 270 µm before exiting at the back of the CPR. The plankton filtered on the silk is analyzed in sections corresponding to 10 nautical miles (approx. 3 m**3 of seawater filtered) and the plankton microscopically identified (Richardson et al., 2006 and reference therein). In the present study we used the CPR data to investigate the current basin scale distribution of C. finmarchicus (C5-C6), C. helgolandicus (C5-C6), C. hyperboreus (C5-C6), Pseudocalanus spp. (C6), Oithona spp. (C1-C6), total Euphausiida, total Thecosomata and the presence/absence of Cnidaria and the Phytoplankton Colour Index (PCI). The PCI, which is a visual assessment of the greenness of the silk, is used as an indicator of the distribution of total phytoplankton biomass across the Atlantic basin (Batten et al., 2003). Monthly data collected between 2000 and 2009 were gridded using the inverse-distance interpolation method, in which the interpolated values were the nodes of a 2 degree by 2 degree grid. The resulting twelve monthly matrices were then averaged within the year and in the case of the zooplankton the data were log-transformed (i.e. log10 (x+1).
Resumo:
The relative paleointensity (RPI) method assumes that the intensity of post depositional remanent magnetization (PDRM) depends exclusively on the magnetic field strength and the concentration of the magnetic carriers. Sedimentary remanence is regarded as an equilibrium state between aligning geomagnetic and randomizing interparticle forces. Just how strong these mechanical and electrostatic forces are, depends on many petrophysical factors related to mineralogy, particle size and shape of the matrix constituents. We therefore test the hypothesis that variations in sediment lithology modulate RPI records. For 90 selected Late Quaternary sediment samples from the subtropical and subantarctic South Atlantic Ocean a combined paleomagnetic and sedimentological dataset was established. Misleading alterations of the magnetic mineral fraction were detected by a routine Fe/kappa test (Funk, J., von Dobeneck, T., Reitz, A., 2004. Integrated rock magnetic and geochemical quantification of redoxomorphic iron mineral diagenesis in Late Quaternary sediments from the Equatorial Atlantic. In: Wefer, G., Mulitza, S., Ratmeyer, V. (Eds.), The South Atlantic in the Late Quaternary: reconstruction of material budgets and current systems. Springer-Verlag, Berlin/Heidelberg/New York/Tokyo, pp. 239-262). Samples with any indication of suboxic magnetite dissolution were excluded from the dataset. The parameters under study include carbonate, opal and terrigenous content, grain size distribution and clay mineral composition. Their bi- and multivariate correlations with the RPI signal were statistically investigated using standard techniques and criteria. While several of the parameters did not yield significant results, clay grain size and chlorite correlate weakly and opal, illite and kaolinite correlate moderately to the NRM/ARM signal used here as a RPI measure. The most influential single sedimentological factor is the kaolinite/illite ratio with a Pearson's coefficient of 0.51 and 99.9% significance. A three-member regression model suggests that matrix effects can make up over 50% of the observed RPI dynamics.
Resumo:
The success of any efforts to determine the effects of climate change on marine ecosystems depends on understanding in the first instance the natural variations, which contemporarily occur on the interannual and shorter time scales. Here we present results on the environmental controls of zooplankton distribution patterns and behaviour in the eastern Weddell Sea, Southern Ocean. Zooplankton abundance and vertical migration are derived from the mean volume backscattering strength (MVBS) and the vertical velocity measured by moored acoustic Doppler current profilers (ADCPs), which were deployed simultaneously at 64°S, 66.5°S and 69°S along the Greenwich Meridian from February, 2005, until March, 2008. While these time series span a period of full three years they resolve hourly changes. A highly persistent behavioural pattern found at all three mooring locations is the synchronous diel vertical migration (DVM) of two distinct groups of zooplankton that migrate between a deep residence depth during daytime and a shallow depth during nighttime. The DVM was closely coupled to the astronomical daylight cycles. However, while the DVM was symmetric around local noon, the annual modulation of the DVM was clearly asymmetric around winter solstice or summer solstice, respectively, at all three mooring sites. DVM at our observation sites persisted throughout winter, even at the highest latitude exposed to the polar night. Since the magnitude as well as the relative rate of change of illumination is minimal at this time, we propose that the ultimate causes of DVM separated from the light-mediated proximal cue that coordinates it. In all three years, a marked change in the migration behaviour occurred in late spring (late October/early November), when DVM ceased. The complete suspension of DVM after early November is possibly caused by the combination of two factors: (1) increased availability of food in the surface mixed layer provided by the phytoplankton spring bloom, and (2) vanishing diurnal enhancement of the threat from visually oriented predators when the illumination is quasi-continuous during the polar and subpolar summer. Zooplankton abundance in the water column, estimated as the mean MVBS in the depth range 50-300 m, was highest end of summer and lowest mid to end winter on the average annual cycle. However, zooplankton abundance varied several-fold between years and between locations. Based on satellite and in situ data of chlorophyll and sea ice as well as on hydrographic measurements, the interannual and spatial variations of zooplankton mean abundance can be explained by differences in the magnitude of the phytoplankton spring bloom, which develops during the seasonal sea ice retreat. Whereas the vernal ice melt appears necessary to stimulate the blooming of phytoplankton, it is not the determinator of the blooms magnitude, its areal extent and duration. A possible explanation for the limitation of the phytoplankton bloom in some years is top-down control. We hypothesise that the phytoplankton spring development can be curbed by grazing when the zooplankton had attained high abundance by growth during the preceding summer.
Resumo:
Alternate pages blank.
Resumo:
Shipping list no.: 2001-0272-P.