986 resultados para Nasopharyngeal Colonization
Resumo:
PARP inhibition can induce anti-neoplastic effects when used as monotherapy or in combination with chemo- or radiotherapy in various tumor settings; however, the basis for the anti-metastasic activities resulting from PARP inhibition remains unknown. PARP inhibitors may also act as modulators of tumor angiogenesis. Proteomic analysis of endothelial cells revealed that vimentin, an intermediary filament involved in angiogenesis and a specific hallmark of EndoMT (endothelial to mesenchymal transition) transformation, was down-regulated following loss of PARP-1 function in endothelial cells. VE-cadherin, an endothelial marker of vascular normalization, was up-regulated in HUVEC treated with PARP inhibitors or following PARP-1 silencing; vimentin over-expression was sufficient to drive to an EndoMT phenotype. In melanoma cells, PARP inhibition reduced pro-metastatic markers, including vasculogenic mimicry. We also demonstrated that vimentin expression was sufficient to induce increased mesenchymal/pro-metastasic phenotypic changes in melanoma cells, including ILK/GSK3-β-dependent E-cadherin down-regulation, Snail1 activation and increased cell motility and migration. In a murine model of metastatic melanoma, PARP inhibition counteracted the ability of melanoma cells to metastasize to the lung. These results suggest that inhibition of PARP interferes with key metastasis-promoting processes, leading to suppression of invasion and colonization of distal organs by aggressive metastatic cells.
Resumo:
During the influenza pandemic of 2009, the A(H1N1)pdm09, A/H3N2 seasonal and influenza B viruses were observed to be co-circulating with other respiratory viruses. To observe the epidemiological pattern of the influenza virus between May 2009-August 2011, 467 nasopharyngeal aspirates were collected from children less than five years of age in the city of Salvador. In addition, data on weather conditions were obtained. Indirect immunofluorescence, real-time transcription reverse polymerase chain reaction (RT-PCR), and sequencing assays were performed for influenza virus detection. Of all 467 samples, 34 (7%) specimens were positive for influenza A and of these, viral characterisation identified Flu A/H3N2 in 25/34 (74%) and A(H1N1)pdm09 in 9/34 (26%). Influenza B accounted for a small proportion (0.8%) and the other respiratory viruses for 27.2% (127/467). No deaths were registered and no pattern of seasonality or expected climatic conditions could be established. These observations are important for predicting the evolution of epidemics and in implementing future anti-pandemic measures.
Resumo:
Two hundred twelve patients with colonization/infection due to amoxicillin-clavulanate (AMC)-resistant Escherichia coli were studied. OXA-1- and inhibitor-resistant TEM (IRT)-producing strains were associated with urinary tract infections, while OXA-1 producers and chromosomal AmpC hyperproducers were associated with bacteremic infections. AMC resistance in E. coli is a complex phenomenon with heterogeneous clinical implications.
Resumo:
Viruses are the major contributors to the morbidity and mortality of upper and lower acute respiratory infections (ARIs) for all age groups. The aim of this study was to determine the frequencies for a large range of respiratory viruses using a sensitive molecular detection technique in specimens from outpatients of all ages with ARIs. Nasopharyngeal aspirates were obtained from 162 individuals between August 2007-August 2009. Twenty-three pathogenic respiratory agents, 18 respiratory viruses and five bacteria were investigated using multiplex real-time reverse transcriptase polymerase chain reaction (RT-PCR) and indirect immunofluorescence assay (IIF). Through IIF, 33 (20.4%) specimens with respiratory virus were recognised, with influenza virus representing over half of the positive samples. Through a multiplex real-time RT-PCR assay, 88 (54.3%) positive samples were detected; the most prevalent respiratory viral pathogens were influenza, human rhinovirus and respiratory syncytial virus (RSV). Six cases of viral co-detection were observed, mainly involving RSV. The use of multiplex real-time RT-PCR increased the viral detection by 33.9% and revealed a larger number of respiratory viruses implicated in ARI cases, including the most recently described respiratory viruses [human bocavirus, human metapneumovirus, influenza A (H1N1) pdm09 virus, human coronavirus (HCoV) NL63 and HCoV HKU1].
Genetic variability in Arbuscular Mycorrhizal Fungi : effect on gene transcription of "Oryza Sativa"
Resumo:
AbstractArbuscular Mycorrhizal Fungi (AMF) form obligate symbioses with the majority of land plants. These fungi influence the diversity and productivity of plants. AMF are unusual organisms, harbouring genetically different nuclei in a common cytoplasm (known as heterokaryosis). Genetic variability has been shown between AMF individuals coming from the same population. Recent findings showed that genetic exchange between genetically different AMF individuals was possible. Additionnaly, segregation was shown to occur at spore formation in AMF. These two processes were shown to increase genetic variability between AMF individuals.Because of the difficulty to study these organisms, almost nothing is known about the effect of intra-specific genetic variability in AMF on the plant transcriptome. The aim of this thesis was to bring insights into the effect of intra-specific genetic variability in AMF on plant gene transcription. We demonstrated that genetic exchange could influence expression of some symbiosis specific plant genes and the timing of the colonization of the fungi in plant roots. We also showed that segregation could have a large impact on plant gene transcription. Taken together, these results demonstrated that AMF intra-specific variability could profoundly affect the life of plants by altering various molecular pathways. Moreover, results obtained on rice open a field of research on AMF genetics in impromvment of growth in agricultural plants and should be taken into account for future experiments.RésuméLes champignons endomycorhiziens arbusculaires (CEA) forment une symbiose obligatoire avec la majorité des plantes sur terre. Ces champignons peuvent influencer la diversité et la productivité des plantes avec lesquelles ils forment la symbiose. Les CEA sont des organismes particuliers de part le fait qu'ils possèdent des noyaux génétiquement différents (appelés hétérocaryosis) dans un cytoplasme commun. Il a été montré qu'il existait de la variabilité génétique intra-specific chez les CEA. De plus, des études recentes ont montré que l'échange génétique chez les CEA était possible entre des individus génétiquement différents tout comme la ségrégation qui a aussi été démontrée au moment de la formation des nouvelles spores chez les CEA. Ces deux processus ont été montrés comme pouvant créer aussi de la variabilité génétique intra-specific.Du fait de la difficulté de travailler avec les CEA et à cause de la nouveauté de ces recherches, très peu de choses sont connues sur l'effet de l'échange génétique et de la ségrégation chez les CEA sur les plantes, et particulièrement au niveau moléculaire. Le but de cette thèse a été d'apporter la lumière sur les effets de la viariabilité génétique intra-specific chez les CEA, sur la transcription des gènes chez la plante. Nous avons pu montrer que l'échange génétique pouvait avoir des effets sur l'expression de gènes spécifiques à cette symbiose mais aussi pouvait influencer le timing de colonisation des racines de plantes par les CEA. Nous avons aussi montré que la ségrégation pouvait grandement influencer le transcriptome complet de la plante, et pas seulement les voies métaboliques spécifiques à la symbiose comme cela avait été montré auparavant.L'ensemble de ces résultats démontre l'importance de la variation intra-specific chez les CEA sur les plantes et leur implication sur leur cycle de vie en changeant l'expression de voies métaboliques. De plus, ces résultats obtenus sur le riz ouvrent un champ de recherches sur les plantes destinées à l'agriculture et devraient être pris en compte pour des expériences futures.
Resumo:
Candida glabrata is an emerging opportunistic pathogen that is known to develop resistance to azole drugs due to increased drug efflux. The mechanism consists of CgPDR1-mediated upregulation of ATP-binding cassette transporters. A range of gain-of-function (GOF) mutations in CgPDR1 have been found to lead not only to azole resistance but also to enhanced virulence. This implicates CgPDR1 in the regulation of the interaction of C. glabrata with the host. To identify specific CgPDR1-regulated steps of the host-pathogen interaction, we investigated in this work the interaction of selected CgPDR1 GOF mutants with murine bone marrow-derived macrophages and human acute monocytic leukemia cell line (THP-1)-derived macrophages, as well as different epithelial cell lines. GOF mutations in CgPDR1 did not influence survival and replication within macrophages following phagocytosis but led to decreased adherence to and uptake by macrophages. This may allow evasion from the host's innate cellular immune response. The interaction with epithelial cells revealed an opposite trend, suggesting that GOF mutations in CgPDR1 may favor epithelial colonization of the host by C. glabrata through increased adherence to epithelial cell layers. These data reveal that GOF mutations in CgPDR1 modulate the interaction with host cells in ways that may contribute to increased virulence.
Resumo:
The aim of the present study was to assess the prevalence of Haemophilus influenzaetype b (Hib) nasopharyngeal (NP) colonisation among healthy children where Hib vaccination using a 3p+0 dosing schedule has been routinely administered for 10 years with sustained coverage (> 90%). NP swabs were collected from 2,558 children who had received the Hib vaccine, of whom 1,379 were 12-< 24 months (m) old and 1,179 were 48-< 60 m old. Hi strains were identified by molecular methods. Hi carriage prevalence was 45.1% (1,153/2,558) and the prevalence in the 12-< 24 m and 48-< 60 m age groups were 37.5% (517/1,379) and 53.9% (636/1,179), respectively. Hib was identified in 0.6% (16/2,558) of all children in the study, being 0.8% (11/1,379) and 0.4% (5/1,179) among the 12-< 24 m and 48-< 60 m age groups, respectively. The nonencapsulate Hi colonisation was 43% (n = 1,099) and was significantly more frequent at 48-< 60 m of age (51.6%, n = 608) compared with that at 12-< 24 m of age (35.6%, n = 491). The overall resistance rates to ampicillin and chloramphenicol were 16.5% and 3.7%, respectively; the co-resistance was detected in 2.6%. Our findings showed that the Hib carrier rate in healthy children under five years was very low after 10 years of the introduction of the Hib vaccine.
Resumo:
Although antibiotics are ineffective against viral respiratory infections, studies have shown high rates of prescriptions worldwide. We conducted a study in Brazil to determine the viral aetiologies of common colds in children and to describe the use of antibiotics for these patients. Children up to 12 years with common colds were enrolled from March 2008-February 2009 at a primary care level facility and followed by regular telephone calls and medical consultations. A nasopharyngeal wash was obtained at enrollment and studied by direct fluorescence assay and polymerase chain reaction for nine different types of virus. A sample of 134 patients was obtained, median age 2.9 years (0.1-11.2 y). Respiratory viruses were detected in 73.9% (99/134) with a coinfection rate of 30.3% (30/99). Rhinovirus was the most frequent virus (53/134; 39.6%), followed by influenza (33/134; 24.6%) and respiratory syncytial virus (8/134; 13.4%). Antibiotic prescription rate was 39.6% (53/134) and 69.8% (37/53) were considered inappropriate. Patients with influenza infection received antibiotics inappropriately in a greater proportion of cases when compared to respiratory syncytial virus and rhinovirus infections (p = 0.016). The rate of inappropriate use of antibiotics was very high and patients with influenza virus infection were prescribed antibiotics inappropriately in a greater proportion of cases.
Resumo:
A total of 1,021 extended-spectrum-β-lactamase-producing Escherichia coli (ESBLEC) isolates obtained in 2006 during a Spanish national survey conducted in 44 hospitals were analyzed for the presence of the O25b:H4-B2-ST131 (sequence type 131) clonal group. Overall, 195 (19%) O25b-ST131 isolates were detected, with prevalence rates ranging from 0% to 52% per hospital. Molecular characterization of 130 representative O25b-ST131 isolates showed that 96 (74%) were positive for CTX-M-15, 15 (12%) for CTX-M-14, 9 (7%) for SHV-12, 6 (5%) for CTX-M-9, 5 (4%) for CTX-M-32, and 1 (0.7%) each for CTX-M-3 and the new ESBL enzyme CTX-M-103. The 130 O25b-ST131 isolates exhibited relatively high virulence scores (mean, 14.4 virulence genes). Although the virulence profiles of the O25b-ST131 isolates were fairly homogeneous, they could be classified into four main virotypes based on the presence or absence of four distinctive virulence genes: virotypes A (22%) (afa FM955459 positive, iroN negative, ibeA negative, sat positive or negative), B (31%) (afa FM955459 negative, iroN positive, ibeA negative, sat positive or negative), C (32%) (afa FM955459 negative, iroN negative, ibeA negative, sat positive), and D (13%) (afa FM955459 negative, iroN positive or negative, ibeA positive, sat positive or negative). The four virotypes were also identified in other countries, with virotype C being overrepresented internationally. Correspondingly, an analysis of XbaI macrorestriction profiles revealed four major clusters, which were largely virotype specific. Certain epidemiological and clinical features corresponded with the virotype. Statistically significant virotype-specific associations included, for virotype B, older age and a lower frequency of infection (versus colonization), for virotype C, a higher frequency of infection, and for virotype D, younger age and community-acquired infections. In isolates of the O25b:H4-B2-ST131 clonal group, these findings uniquely define four main virotypes, which are internationally distributed, correspond with pulsed-field gel electrophoresis (PFGE) profiles, and exhibit distinctive clinical-epidemiological associations.
Resumo:
Y chromosome variation is determined by several confounding factors including mutation rate, effective population size, demography, and selection. Disentangling these factors is essential to better understand the evolutionary properties of the Y chromosome. We analyzed genetic variation on the Y chromosome, X chromosome, and mtDNA of the greater white-toothed shrew, a species with low variance in male reproductive success and limited sex-biased dispersal, which enables us to control to some extent for life-history effects. We also compared ancestral (Moroccan) to derived (European) populations to investigate the role of demographic history in determining Y variation. Recent colonization of Europe by a small number of founders (combined with low mutation rates) is largely responsible for low diversity observed on the European Y and X chromosomes compared to mtDNA. After accounting for mutation rate, copy number, and demography, the Y chromosome still displays a deficit in variation relative to the X in both populations. This is possibly influenced by directional selection, but the slightly higher variance in male reproductive success is also likely to play a role, even though the difference is small compared to that in highly polygynous species. This study illustrates that demography and life-history effects should be scrutinized before inferring strong selective pressure as a reason for low diversity on the Y chromosome.
Resumo:
Evolutionary processes acting at the expanding margins of a species' range are still poorly understood. Genetic drift is considered prevalent in marginal populations, and the maintenance of genetic diversity during recolonization might seem puzzling. To investigate such processes, a fine-scale investigation of 219 individuals was performed within a population of Biscutella laevigata (Brassicaceae), located at the leading edge of its range. The survey used amplified fragment length polymorphisms (AFLPs). As commonly reported across the whole species distribution range, individual density and genetic diversity decreased along the local axis of recolonization of this expanding population, highlighting the enduring effect of the historical colonization on present-day diversity. The self-incompatibility system of the plant may have prevented local inbreeding in newly found patches and sustained genetic diversity by ensuring gene flow from established populations. Within the more continuously populated region, spatial analysis of genetic structure revealed restricted gene flow among individuals. The distribution of genotypes formed a mosaic of relatively homogenous patches within the continuous population. This pattern could be explained by a history of expansion by long-distance dispersal followed by fine-scale diffusion (that is, a stratified dispersal combination). The secondary contact among expanding patches apparently led to admixture among differentiated genotypes where they met (that is, a reshuffling effect). This type of dynamics could explain the maintenance of genetic diversity during recolonization.
Resumo:
AimThe study of adaptive radiations provides an evolutionary perspective on the interactions between organisms and their environment, and is necessary to understand global biodiversity. Adaptive radiations can sometimes be replicated over several disjunct geographical entities, but most examples are found on island or in lakes. Here, we investigated the biogeographical history of the clownfishes, a clade of coral reef fish with ranges that now span most of the Indo-Pacific Ocean, in order to explore the geographical structure of an unusual adaptive radiation. LocationIndian Ocean, Indo-Australian Archipelago (IAA) and Central Pacific Ocean. MethodsWe generated DNA sequence data comprising seven nuclear markers for 27 of the 30 clownfish species. We then inferred a Bayesian phylogeny and reconstructed the biogeographical history of the group using three different methods. Finally, we applied a biogeographical model of diversification to assess whether diversification patterns differ between the Indian and Pacific Oceans. ResultsThe phylogenetic tree is highly supported and allows reconstruction of the biogeographical history of the clade. While most species arose in the IAA, one clade colonized the eastern shores of Africa and diversified there. We found that the diversification rate of clownfishes does not differ between the main radiation and the African clade. Main conclusionsThe clownfishes first appeared and diversified in the IAA. Following a colonization event, a geographically independent radiation occurred in the Indian Ocean off East Africa. This rare example of replicated adaptive radiation in the marine realm provides intriguing possibilities for further research on ecological speciation in the sea.
Resumo:
The importance of competition between similar species in driving community assembly is much debated. Recently, phylogenetic patterns in species composition have been investigated to help resolve this question: phylogenetic clustering is taken to imply environmental filtering, and phylogenetic overdispersion to indicate limiting similarity between species. We used experimental plant communities with random species compositions and initially even abundance distributions to examine the development of phylogenetic pattern in species abundance distributions. Where composition was held constant by weeding, abundance distributions became overdispersed through time, but only in communities that contained distantly related clades, some with several species (i.e., a mix of closely and distantly related species). Phylogenetic pattern in composition therefore constrained the development of overdispersed abundance distributions, and this might indicate limiting similarity between close relatives and facilitation/complementarity between distant relatives. Comparing the phylogenetic patterns in these communities with those expected from the monoculture abundances of the constituent species revealed that interspecific competition caused the phylogenetic patterns. Opening experimental communities to colonization by all species in the species pool led to convergence in phylogenetic diversity. At convergence, communities were composed of several distantly related but species-rich clades and had overdispersed abundance distributions. This suggests that limiting similarity processes determine which species dominate a community but not which species occur in a community. Crucially, as our study was carried out in experimental communities, we could rule out local evolutionary or dispersal explanations for the patterns and identify ecological processes as the driving force, underlining the advantages of studying these processes in experimental communities. Our results show that phylogenetic relations between species provide a good guide to understanding community structure and add a new perspective to the evidence that niche complementarity is critical in driving community assembly.
Resumo:
Simultaneous presence of several tramp ant species of relatively recent introduction on a remote island is an excellent opportunity to study competition mechanisms that lead to the establishment of invasive species. Using attractive food baits we collected 14 ant species among which 10 are well-known tramp species. The most important change between 1996-97 and 2003 is the spread of the tropical fire ant Solenopsis geminata at the detriment of Tetramorium simillimum, suggesting that the colonization process on Floreana is still very dynamic. The follow-up of 400 food baits for 21 hours permitted us to calculate indices of competition abilities for 11 species, revealing distinct strategies. The two small tramp species Monomorium floricola and Tapinoma melanocephalum are typically opportunists when large-sized Odontomachus bauri (possibly native species) and Camponotus macilentus (endemic species) are good interference competitors, out-competing other species at food baits. Dominant species S. geminata and Monomorium destructor reach high scores for all indices due to their high abundance.
Resumo:
Urease is an important virulence factor for Helicobacter pylori and is critical for bacterial colonization of the human gastric mucosa. Specific inhibition of urease activity has been proposed as a possible strategy to fight this bacteria which infects billions of individual throughout the world and can lead to severe pathological conditions in a limited number of cases. We have selected peptides which specifically bind and inhibit H. pylori urease from libraries of random peptides displayed on filamentous phage in the context of pIII coat protein. Screening of a highly diverse 25-mer combinatorial library and two newly constructed random 6-mer peptide libraries on solid phase H. pylori urease holoenzyme allowed the identification of two peptides, 24-mer TFLPQPRCSALLRYLSEDGVIVPS and 6-mer YDFYWW that can bind and inhibit the activity of urease purified from H. pylori. These two peptides were chemically synthesized and their inhibition constants (Ki) were found to be 47 microM for the 24-mer and 30 microM for the 6-mer peptide. Both peptides specifically inhibited the activity of H. pylori urease but not that of Bacillus pasteurii.