996 resultados para Musical genre classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sur le plan économique, le système de genre est une pierre angulaire du discours publicitaire. Il intervient dans la segmentation des marchés, dans la sélection des médias et des supports, dans l'apparence extérieure des produits, dans le ton des campagnes, dans le choix des arguments de vente et, bien sûr, dans les scripts des annonces qui mettent en scène, en grand nombre, des êtres humains. En contrepartie, sur le plan symbolique, le discours publicitaire est un dépositaire privilégié des imaginaires de genre qui circulent dans son contexte de production et de diffusion. En cette qualité, confronté aux lois d'un marché toujours plus concurrentiel, à une segmentation plus fine des cibles, à la multiplication des supports, à l'instabilité croissante des consommateurs ainsi qu'à une critique médiatique, académique et publique toujours prompte à relever sa tendance au stéréotypage, le discours publicitaire est amené à proposer des représentations des hommes et des femmes de plus en plus variées et complexes. La présente étude, qui relève de l'analyse linguistique des discours, a pour objectif d'entrer dans la complexité de ces variations publicitaires contemporaines sur le féminin et le masculin et de déchiffrer les imaginaires de genre qu'elles contribuent à construire. Après un état des lieux des travaux consacrés à la représentation publicitaire des sexes ainsi qu'une présentation détaillée des jalons théoriques et méthodologiques de l'approche adoptée, une analyse de contenu, réalisée sur la base d'un corpus de plus 1200 annonces, met en évidence les configurations récurrentes du masculin et du féminin dans la production publicitaire contemporaine de presse magazine. Une analyse textuelle et critique interroge ensuite le rôle de la langue dans le processus de schématisation des imaginaires publicitaires de genre. Dans un premier temps, grâce à une prise en compte des déterminations prédiscursive et discursive des représentations publicitaires du féminin et du masculin, cette analyse montre comment le discours publicitaire, en plus de différencier radicalement le féminin et le masculin, tend à essentialiser cette différenciation au travers de deux procédés discursifs d'idéologisation, la catégorisation et la généralisation. Dans un second temps, un inventaire thématique des variations publicitaires contemporaines sur le genre permet d'évaluer la perméabilité du discours publicitaire à la reconfiguration du système de genre qui est en marche dans notre société depuis la seconde moitié du vingtième siècle. La présente recherche, qui entend globalement déconstruire ce qui prend trop souvent l'apparence d'évidences et soumettre à débat des interprétations, thématise par ailleurs la question de la dimension politique des recherches académiques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, mixed spectral-structural kernel machines are proposed for the classification of very-high resolution images. The simultaneous use of multispectral and structural features (computed using morphological filters) allows a significant increase in classification accuracy of remote sensing images. Subsequently, weighted summation kernel support vector machines are proposed and applied in order to take into account the multiscale nature of the scene considered. Such classifiers use the Mercer property of kernel matrices to compute a new kernel matrix accounting simultaneously for two scale parameters. Tests on a Zurich QuickBird image show the relevance of the proposed method : using the mixed spectral-structural features, the classification accuracy increases of about 5%, achieving a Kappa index of 0.97. The multikernel approach proposed provide an overall accuracy of 98.90% with related Kappa index of 0.985.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation‑based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi‑resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Among the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, have the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical‑based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to evaluate the biochemical composition of six berry types belonging to Fragaria, Rubus, Vaccinium and Ribes genus. Fruit samples were collected in triplicate (50 fruit each) from 18 different species or cultivars of the mentioned genera, during three years (2008 to 2010). Content of individual sugars, organic acids, flavonols, and phenolic acids were determined by high performance liquid chromatography (HPLC) analysis, while total phenolics (TPC) and total antioxidant capacity (TAC), by using spectrophotometry. Principal component analysis (PCA) and hierarchical cluster analysis (CA) were performed to evaluate the differences in fruit biochemical profile. The highest contents of bioactive components were found in Ribes nigrum and in Fragaria vesca, Rubus plicatus, and Vaccinium myrtillus. PCA and CA were able to partially discriminate between berries on the basis of their biochemical composition. Individual and total sugars, myricetin, ellagic acid, TPC and TAC showed the highest impact on biochemical composition of the berry fruits. CA separated blackberry, raspberry, and blueberry as isolate groups, while classification of strawberry, black and red currant in a specific group has not occurred. There is a large variability both between and within the different types of berries. Metabolite fingerprinting of the evaluated berries showed unique biochemical profiles and specific combination of bioactive compound contents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this study was todo a statistical analysis of ecological type from optical satellite data, using Tipping's sparse Bayesian algorithm. This thesis uses "the Relevence Vector Machine" algorithm in ecological classification betweenforestland and wetland. Further this bi-classification technique was used to do classification of many other different species of trees and produces hierarchical classification of entire subclasses given as a target class. Also, we carried out an attempt to use airborne image of same forest area. Combining it with image analysis, using different image processing operation, we tried to extract good features and later used them to perform classification of forestland and wetland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider active sampling to label pixels grouped with hierarchical clustering. The objective of the method is to match the data relationships discovered by the clustering algorithm with the user's desired class semantics. The first is represented as a complete tree to be pruned and the second is iteratively provided by the user. The active learning algorithm proposed searches the pruning of the tree that best matches the labels of the sampled points. By choosing the part of the tree to sample from according to current pruning's uncertainty, sampling is focused on most uncertain clusters. This way, large clusters for which the class membership is already fixed are no longer queried and sampling is focused on division of clusters showing mixed labels. The model is tested on a VHR image in a multiclass classification setting. The method clearly outperforms random sampling in a transductive setting, but cannot generalize to unseen data, since it aims at optimizing the classification of a given cluster structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mature T-cell and T/NK-cell neoplasms are both uncommon and heterogeneous, among the broad category of non-Hodgkin's lymphomas. Due to the lack of specific genetic alterations in the vast majority of cases, most currently defined entities show overlapping morphologic and immunophenotypic features and therefore pose a challenge to the diagnostic pathologist. The goal of the symposium is to address current criteria for the recognition of specific subtypes of T-cell lymphoma, and to highlight new data regarding emerging immunophenotypic or molecular markers. This activity has been designed to meet the needs of practicing pathologists, and residents and fellows enrolled in training programs in anatomic and clinical pathology. It should be a particular benefit to those with an interest in hematopathology. Upon completion of this activity, participants should be better able to: -To be able to state the basis for the classification of mature T-cell malignancies involving nodal and extranodal sites. -To recognize and accurately diagnose the various subtypes of nodal and extranodal peripheral T-cell lymphomas. -To utilize immunohistochemical and molecular tests to characterize atypical T-cell proliferations. -To recognize and accurately diagnose T-cell lymphoproliferative lesions involving the skin and gastrointestinal tract, and be able to provide guidance regarding their clinical aggressiveness and management -To be able to utilize flow cytometric data to identify diverse functional T-cell subsets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel image classification scheme for benthic coral reef images that can be applied to both single image and composite mosaic datasets. The proposed method can be configured to the characteristics (e.g., the size of the dataset, number of classes, resolution of the samples, color information availability, class types, etc.) of individual datasets. The proposed method uses completed local binary pattern (CLBP), grey level co-occurrence matrix (GLCM), Gabor filter response, and opponent angle and hue channel color histograms as feature descriptors. For classification, either k-nearest neighbor (KNN), neural network (NN), support vector machine (SVM) or probability density weighted mean distance (PDWMD) is used. The combination of features and classifiers that attains the best results is presented together with the guidelines for selection. The accuracy and efficiency of our proposed method are compared with other state-of-the-art techniques using three benthic and three texture datasets. The proposed method achieves the highest overall classification accuracy of any of the tested methods and has moderate execution time. Finally, the proposed classification scheme is applied to a large-scale image mosaic of the Red Sea to create a completely classified thematic map of the reef benthos