929 resultados para Multivariate Adaptive Regression Splines (MARS)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an Adaptive Maximum Entropy (AME) approach for modeling biological species. The Maximum Entropy algorithm (MaxEnt) is one of the most used methods in modeling biological species geographical distribution. The approach presented here is an alternative to the classical algorithm. Instead of using the same set features in the training, the AME approach tries to insert or to remove a single feature at each iteration. The aim is to reach the convergence faster without affect the performance of the generated models. The preliminary experiments were well performed. They showed an increasing on performance both in accuracy and in execution time. Comparisons with other algorithms are beyond the scope of this paper. Some important researches are proposed as future works.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper contains a new proposal for the definition of the fundamental operation of query under the Adaptive Formalism, one capable of locating functional nuclei from descriptions of their semantics. To demonstrate the method`s applicability, an implementation of the query procedure constrained to a specific class of devices is shown, and its asymptotic computational complexity is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a free software tool that supports the next-generation Mobile Communications, through the automatic generation of models of components and electronic devices based on neural networks. This tool enables the creation, training, validation and simulation of the model directly from measurements made on devices of interest, using an interface totally oriented to non-experts in neural models. The resulting model can be exported automatically to a traditional circuit simulator to test different scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work deals with the problem of minimizing the waste of space that occurs on a rotational placement of a set of irregular bi-dimensional items inside a bi-dimensional container. This problem is approached with a heuristic based on Simulated Annealing (SA) with adaptive neighborhood. The objective function is evaluated in a constructive approach, where the items are placed sequentially. The placement is governed by three different types of parameters: sequence of placement, the rotation angle and the translation. The rotation applied and the translation of the polygon are cyclic continuous parameters, and the sequence of placement defines a combinatorial problem. This way, it is necessary to control cyclic continuous and discrete parameters. The approaches described in the literature deal with only type of parameter (sequence of placement or translation). In the proposed SA algorithm, the sensibility of each continuous parameter is evaluated at each iteration increasing the number of accepted solutions. The sensibility of each parameter is associated to its probability distribution in the definition of the next candidate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simulated annealing (SA) is an optimization technique that can process cost functions with degrees of nonlinearities, discontinuities and stochasticity. It can process arbitrary boundary conditions and constraints imposed on these cost functions. The SA technique is applied to the problem of robot path planning. Three situations are considered here: the path is represented as a polyline; as a Bezier curve; and as a spline interpolated curve. In the proposed SA algorithm, the sensitivity of each continuous parameter is evaluated at each iteration increasing the number of accepted solutions. The sensitivity of each parameter is associated to its probability distribution in the definition of the next candidate. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose an approach to the transient and steady-state analysis of the affine combination of one fast and one slow adaptive filters. The theoretical models are based on expressions for the excess mean-square error (EMSE) and cross-EMSE of the component filters, which allows their application to different combinations of algorithms, such as least mean-squares (LMS), normalized LMS (NLMS), and constant modulus algorithm (CMA), considering white or colored inputs and stationary or nonstationary environments. Since the desired universal behavior of the combination depends on the correct estimation of the mixing parameter at every instant, its adaptation is also taken into account in the transient analysis. Furthermore, we propose normalized algorithms for the adaptation of the mixing parameter that exhibit good performance. Good agreement between analysis and simulation results is always observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the problem of distributed estimation based on the affine projection algorithm (APA), which is developed from Newton`s method for minimizing a cost function. The proposed solution is formulated to ameliorate the limited convergence properties of least-mean-square (LMS) type distributed adaptive filters with colored inputs. The analysis of transient and steady-state performances at each individual node within the network is developed by using a weighted spatial-temporal energy conservation relation and confirmed by computer simulations. The simulation results also verify that the proposed algorithm provides not only a faster convergence rate but also an improved steady-state performance as compared to an LMS-based scheme. In addition, the new approach attains an acceptable misadjustment performance with lower computational and memory cost, provided the number of regressor vectors and filter length parameters are appropriately chosen, as compared to a distributed recursive-least-squares (RLS) based method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As is well known, Hessian-based adaptive filters (such as the recursive-least squares algorithm (RLS) for supervised adaptive filtering, or the Shalvi-Weinstein algorithm (SWA) for blind equalization) converge much faster than gradient-based algorithms [such as the least-mean-squares algorithm (LMS) or the constant-modulus algorithm (CMA)]. However, when the problem is tracking a time-variant filter, the issue is not so clear-cut: there are environments for which each family presents better performance. Given this, we propose the use of a convex combination of algorithms of different families to obtain an algorithm with superior tracking capability. We show the potential of this combination and provide a unified theoretical model for the steady-state excess mean-square error for convex combinations of gradient- and Hessian-based algorithms, assuming a random-walk model for the parameter variations. The proposed model is valid for algorithms of the same or different families, and for supervised (LMS and RLS) or blind (CMA and SWA) algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SKAN: Skin Scanner - System for Skin Cancer Detection Using Adaptive Techniques - combines computer engineering concepts with areas like dermatology and oncology. Its objective is to discern images of skin cancer, specifically melanoma, from others that show only common spots or other types of skin diseases, using image recognition. This work makes use of the ABCDE visual rule, which is often used by dermatologists for melanoma identification, to define which characteristics are analyzed by the software. It then applies various algorithms and techniques, including an ellipse-fitting algorithm, to extract and measure these characteristics and decide whether the spot is a melanoma or not. The achieved results are presented with special focus on the adaptive decision-making and its effect on the diagnosis. Finally, other applications of the software and its algorithms are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper it is presented the theoretical background, the architecture (using the ""4+1"" model), and the use of the library for execution of adaptive devices, AdapLib. This library was created seeking to be accurate to the adaptive devices theory, and to allow its easy extension considering the specific details of solutions that employ this kind of device. As an example, it is presented a case study in which the library was used to create a proof of concept to monitor and diagnose problems in an online news portal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim objective of this project was to evaluate the protein extraction of soybean flour in dairy whey, by the multivariate statistical method with 2(3) experiments. Influence of three variables were considered: temperature, pH and percentage of sodium chloride against the process specific variable ( percentage of protein extraction). It was observed that, during the protein extraction against time and temperature, the treatments at 80 degrees C for 2h presented great values of total protein (5.99%). The increasing for the percentage of protein extraction was major according to the heating time. Therefore, the maximum point from the function that represents the protein extraction was analysed by factorial experiment 2(3). By the results, it was noted that all the variables were important to extraction. After the statistical analyses, was observed that the parameters as pH, temperature, and percentage of sodium chloride, did not sufficient for the extraction process, since did not possible to obtain the inflection point from mathematical function, however, by the other hand, the mathematical model was significant, as well as, predictive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we compare three residuals to assess departures from the error assumptions as well as to detect outlying observations in log-Burr XII regression models with censored observations. These residuals can also be used for the log-logistic regression model, which is a special case of the log-Burr XII regression model. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and the empirical distribution of each residual is displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended to the modified martingale-type residual in log-Burr XII regression models with censored data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to examine the sensory characteristics of the grains of 21 cultivars of Coffea arabica L. and Coffea canephora Pierre from the essays of genetic improvement of EPAMIG, located in Patrocinio Municipality, Minas Gerais State, where they were collected through cloths stripping method and washed. Subsequently to dry (11 to 12% moisture b.u.), we obtained the coffee designated as natural. The evaluated varieties were: Acaia Cerrado MG 1474; Bourbon Vermelho DATERRA; Catigua MG 1; Catigua MG 2; Catual Amarelo IAC 62; Catuai Vermelho IAC 15; H 419-3-1-4-2; H 419-6-2 -5-2; H 419-6-2-5-3; H 419-6-2-7-3 Vermelho; H 493-1-2-10; H 514-7-10-1 Vermelho; H 514-7-10-6; H 515-4-2-2; H 518-3-6-1; Icatu Amarelo IAC 3282; Mundo Novo 379-19; Mundo Novo TAO 376-4; Rubi MG 1192; Sacramento MG 1 and Topazio MG 1190, from 2005/2006 and 2006/2007 seasons. The cultivars according to the first principal component with notes above 80 points, regarded as superior drink according to attributes with the highest scores (flavor, sweetness, balance, acidity, clean drink, and aspect) were: Catigua MG2, Rubi MG 1192, 514-7-10-6 H, H 419-3-1-4-2, H 419-6-2-5-2, 493-1-2-10 H, H 514-7-10-1 Vermelho, Catigua MG1, Sacramento MG1, 419-6-2-5-3 H, H 515-9-2-2 and Catuai Amarelo IAC 62.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bathtub-shaped failure rate function is very useful in survival analysis and reliability studies. The well-known lifetime distributions do not have this property. For the first time, we propose a location-scale regression model based on the logarithm of an extended Weibull distribution which has the ability to deal with bathtub-shaped failure rate functions. We use the method of maximum likelihood to estimate the model parameters and some inferential procedures are presented. We reanalyze a real data set under the new model and the log-modified Weibull regression model. We perform a model check based on martingale-type residuals and generated envelopes and the statistics AIC and BIC to select appropriate models. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a regression model considering the modified Weibull distribution. This distribution can be used to model bathtub-shaped failure rate functions. Assuming censored data, we consider maximum likelihood and Jackknife estimators for the parameters of the model. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and we also present some ways to perform global influence. Besides, for different parameter settings, sample sizes and censoring percentages, various simulations are performed and the empirical distribution of the modified deviance residual is displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended for a martingale-type residual in log-modified Weibull regression models with censored data. Finally, we analyze a real data set under log-modified Weibull regression models. A diagnostic analysis and a model checking based on the modified deviance residual are performed to select appropriate models. (c) 2008 Elsevier B.V. All rights reserved.