939 resultados para Multiple-trait analysis
Resumo:
Abstract Background For analyzing longitudinal familial data we adopted a log-linear form to incorporate heterogeneity in genetic variance components over the time, and additionally a serial correlation term in the genetic effects at different levels of ages. Due to the availability of multiple measures on the same individual, we permitted environmental correlations that may change across time. Results Systolic blood pressure from family members from the first and second cohort was used in the current analysis. Measures of subjects receiving hypertension treatment were set as censored values and they were corrected. An initial check of the variance and covariance functions proposed for analyzing longitudinal familial data, using empirical semi-variogram plots, indicated that the observed trait dispersion pattern follows the assumptions adopted. Conclusion The corrections for censored phenotypes based on ordinary linear models may be an appropriate simple model to correct the data, ensuring that the original variability in the data was retained. In addition, empirical semi-variogram plots are useful for diagnosis of the (co)variance model adopted.
Resumo:
Background: Aortic aneurysm and dissection are important causes of death in older people. Ruptured aneurysms show catastrophic fatality rates reaching near 80%. Few population-based mortality studies have been published in the world and none in Brazil. The objective of the present study was to use multiple-cause-of-death methodology in the analysis of mortality trends related to aortic aneurysm and dissection in the state of Sao Paulo, between 1985 and 2009. Methods: We analyzed mortality data from the Sao Paulo State Data Analysis System, selecting all death certificates on which aortic aneurysm and dissection were listed as a cause-of-death. The variables sex, age, season of the year, and underlying, associated or total mentions of causes of death were studied using standardized mortality rates, proportions and historical trends. Statistical analyses were performed by chi-square goodness-of-fit and H Kruskal-Wallis tests, and variance analysis. The joinpoint regression model was used to evaluate changes in age-standardized rates trends. A p value less than 0.05 was regarded as significant. Results: Over a 25-year period, there were 42,615 deaths related to aortic aneurysm and dissection, of which 36,088 (84.7%) were identified as underlying cause and 6,527 (15.3%) as an associated cause-of-death. Dissection and ruptured aneurysms were considered as an underlying cause of death in 93% of the deaths. For the entire period, a significant increased trend of age-standardized death rates was observed in men and women, while certain non-significant decreases occurred from 1996/2004 until 2009. Abdominal aortic aneurysms and aortic dissections prevailed among men and aortic dissections and aortic aneurysms of unspecified site among women. In 1985 and 2009 death rates ratios of men to women were respectively 2.86 and 2.19, corresponding to a difference decrease between rates of 23.4%. For aortic dissection, ruptured and non-ruptured aneurysms, the overall mean ages at death were, respectively, 63.2, 68.4 and 71.6 years; while, as the underlying cause, the main associated causes of death were as follows: hemorrhages (in 43.8%/40.5%/13.9%); hypertensive diseases (in 49.2%/22.43%/24.5%) and atherosclerosis (in 14.8%/25.5%/15.3%); and, as associated causes, their principal overall underlying causes of death were diseases of the circulatory (55.7%), and respiratory (13.8%) systems and neoplasms (7.8%). A significant seasonal variation, with highest frequency in winter, occurred in deaths identified as underlying cause for aortic dissection, ruptured and non-ruptured aneurysms. Conclusions: This study introduces the methodology of multiple-causes-of-death to enhance epidemiologic knowledge of aortic aneurysm and dissection in São Paulo, Brazil. The results presented confer light to the importance of mortality statistics and the need for epidemiologic studies to understand unique trends in our own population.
Resumo:
Human endogenous retroviruses (HERVs) arise from ancient infections of the host germline cells by exogenous retroviruses, constituting 8% of the human genome. Elevated level of envelope transcripts from HERVs-W has been detected in CSF, plasma and brain tissues from patients with Multiple Sclerosis (MS), most of them from Xq22.3, 15q21.3, and 6q21 chromosomes. However, since the locus Xq22.3 (ERVWE2) lack the 5' LTR promoter and the putative protein should be truncated due to a stop codon, we investigated the ERVWE2 genomic loci from 84 individuals, including MS patients with active HERV-W expression detected in PBMC. In addition, an automated search for promoter sequences in 20 kb nearby region of ERVWE2 reference sequence was performed. Several putative binding sites for cellular cofactors and enhancers were found, suggesting that transcription may occur via alternative promoters. However, ERVWE2 DNA sequencing of MS and healthy individuals revealed that all of them harbor a stop codon at site 39, undermining the expression of a full-length protein. Finally, since plaque formation in central nervous system (CNS) of MS patients is attributed to immunological mechanisms triggered by autoimmune attack against myelin, we also investigated the level of similarity between envelope protein and myelin oligodendrocyte glycoprotein (MOG). Comparison of the MOG to the envelope identified five retroviral regions similar to the Ig-like domain of MOG. Interestingly, one of them includes T and B cell epitopes, capable to induce T effector functions and circulating Abs in rats. In sum, although no DNA substitutions that would link ERVWE2 to the MS pathogeny was found, the similarity between the envelope protein to MOG extends the idea that ERVEW2 may be involved on the immunopathogenesis of MS, maybe facilitating the MOG recognizing by the immune system. Although awaiting experimental evidences, the data presented here may expand the scope of the endogenous retroviruses involvement on MS pathogenesis
Resumo:
Natural systems face pressures exerted by natural physical-chemical forcings and a myriad of co-occurring human stressors that may interact to cause larger than expected effects, thereby presenting a challenge to ecosystem management. This thesis aimed to develop new information that can contribute to reduce the existing knowledge gaps hampering the holistic management of multiple stressors. I undertook a review of the state-of-the-art methods to detect, quantify and predict stressor interactions, identifying techniques that could be applied in this thesis research. Then, I conducted a systematic review of saltmarsh multiple stressor studies in conjunction with a multiple stressor mapping exercise for the study system in order to infer potential important synergistic stressor interactions. This analysis identified key stressors that are affecting the study system, but also pointed to data gaps in terms of driver and pressure data and raised issues for potentially overlooked stressors. Using field mesocosms, I explored how a local stressor (nutrient availability) affects the responses of saltmarsh vegetation to a global stressor (increased inundation) in different soil types. Results indicate that saltmarsh vegetation would be more drastically affected by increased inundation in low than in medium organic matter soils, and especially in estuaries already under high nutrient availability. In another field experiment, I examined the challenges of managing co-occurring and potentially interacting local stressors on saltmarsh vegetation: recreational trampling and smothering by deposition of excess macroalgal wrack due to high nutrient loads. Trampling and wrack prevention had interacting effects, causing non-linear responses of the vegetation to simulated management of these stressors, such that vegetation recovered only in those treatments simulating the combined prevention of both stressors. During this research I detected, using molecular genetic methods, a widespread presence of S. anglica (and to a lesser extent S. townsendii), two previously unrecorded non-native Spartinas in the study areas.
Resumo:
CE with multiple isomer sulfated beta-CD as the chiral selector was assessed for the simultaneous analysis of the enantiomers of ketamine and metabolites in extracts of equine plasma and urine. Different lots of the commercial chiral selector provided significant changes in enantiomeric ketamine separability, a fact that can be related to the manufacturing variability. A mixture of two lots was found to provide high-resolution separations and interference-free detection of the enantiomers of ketamine, norketamine, dehydronorketamine, and an incompletely identified hydroxylated metabolite of norketamine in liquid/liquid extracts of the two body fluids. Ketamine, norketamine, and dehydronorketamine could be unambiguously identified via HPLC fractionation of urinary extracts and using LC-MS and LC-MS/MS with 1 mmu mass discrimination. The CE assay was used to characterize the stereoselectivity of the compounds' enantiomers in the samples of five ponies anesthetized with isoflurane in oxygen and treated with intravenous continuous infusion of racemic ketamine. The concentrations of the ketamine enantiomers in plasma are equal, whereas the urinary amount of R-ketamine is larger than that of S-ketamine. Plasma and urine contain higher S- than R-norketamine levels and the mean S-/R-enantiomer ratios of dehydronorketamine in plasma and urine are lower than unity and similar.
Resumo:
Whilst estimation of the marginal (total) causal effect of a point exposure on an outcome is arguably the most common objective of experimental and observational studies in the health and social sciences, in recent years, investigators have also become increasingly interested in mediation analysis. Specifically, upon establishing a non-null total effect of the exposure, investigators routinely wish to make inferences about the direct (indirect) pathway of the effect of the exposure not through (through) a mediator variable that occurs subsequently to the exposure and prior to the outcome. Although powerful semiparametric methodologies have been developed to analyze observational studies, that produce double robust and highly efficient estimates of the marginal total causal effect, similar methods for mediation analysis are currently lacking. Thus, this paper develops a general semiparametric framework for obtaining inferences about so-called marginal natural direct and indirect causal effects, while appropriately accounting for a large number of pre-exposure confounding factors for the exposure and the mediator variables. Our analytic framework is particularly appealing, because it gives new insights on issues of efficiency and robustness in the context of mediation analysis. In particular, we propose new multiply robust locally efficient estimators of the marginal natural indirect and direct causal effects, and develop a novel double robust sensitivity analysis framework for the assumption of ignorability of the mediator variable.
Resumo:
BACKGROUND: Assessment of lung volume (FRC) and ventilation inhomogeneities with ultrasonic flowmeter and multiple breath washout (MBW) has been used to provide important information about lung disease in infants. Sub-optimal adjustment of the mainstream molar mass (MM) signal for temperature and external deadspace may lead to analysis errors in infants with critically small tidal volume changes during breathing. METHODS: We measured expiratory temperature in human infants at 5 weeks of age and examined the influence of temperature and deadspace changes on FRC results with computer simulation modeling. A new analysis method with optimized temperature and deadspace settings was then derived, tested for robustness to analysis errors and compared with the previously used analysis methods. RESULTS: Temperature in the facemask was higher and variations of deadspace volumes larger than previously assumed. Both showed considerable impact upon FRC and LCI results with high variability when obtained with the previously used analysis model. Using the measured temperature we optimized model parameters and tested a newly derived analysis method, which was found to be more robust to variations in deadspace. Comparison between both analysis methods showed systematic differences and a wide scatter. CONCLUSION: Corrected deadspace and more realistic temperature assumptions improved the stability of the analysis of MM measurements obtained by ultrasonic flowmeter in infants. This new analysis method using the only currently available commercial ultrasonic flowmeter in infants may help to improve stability of the analysis and further facilitate assessment of lung volume and ventilation inhomogeneities in infants.
Resumo:
Arabidopsis thaliana has emerged as a leading model species in plant genetics and functional genomics including research on the genetic causes of heterosis. We applied a triple testcross (TTC) design and a novel biometrical approach to identify and characterize quantitative trait loci (QTL) for heterosis of five biomass-related traits by (i) estimating the number, genomic positions, and genetic effects of heterotic QTL, (ii) characterizing their mode of gene action, and (iii) testing for presence of epistatic effects by a genomewide scan and marker x marker interactions. In total, 234 recombinant inbred lines (RILs) of Arabidopsis hybrid C24 x Col-0 were crossed to both parental lines and their F1 and analyzed with 110 single-nucleotide polymorphism (SNP) markers. QTL analyses were conducted using linear transformations Z1, Z2, and Z3 calculated from the adjusted entry means of TTC progenies. With Z1, we detected 12 QTL displaying augmented additive effects. With Z2, we mapped six QTL for augmented dominance effects. A one-dimensional genome scan with Z3 revealed two genomic regions with significantly negative dominance x additive epistatic effects. Two-way analyses of variance between marker pairs revealed nine digenic epistatic interactions: six reflecting dominance x dominance effects with variable sign and three reflecting additive x additive effects with positive sign. We conclude that heterosis for biomass-related traits in Arabidopsis has a polygenic basis with overdominance and/or epistasis being presumably the main types of gene action.
Resumo:
The goal of this research is to provide a framework for vibro-acoustical analysis and design of a multiple-layer constrained damping structure. The existing research on damping and viscoelastic damping mechanism is limited to the following four mainstream approaches: modeling techniques of damping treatments/materials; control through the electrical-mechanical effect using the piezoelectric layer; optimization by adjusting the parameters of the structure to meet the design requirements; and identification of the damping material’s properties through the response of the structure. This research proposes a systematic design methodology for the multiple-layer constrained damping beam giving consideration to vibro-acoustics. A modeling technique to study the vibro-acoustics of multiple-layered viscoelastic laminated beams using the Biot damping model is presented using a hybrid numerical model. The boundary element method (BEM) is used to model the acoustical cavity whereas the Finite Element Method (FEM) is the basis for vibration analysis of the multiple-layered beam structure. Through the proposed procedure, the analysis can easily be extended to other complex geometry with arbitrary boundary conditions. The nonlinear behavior of viscoelastic damping materials is represented by the Biot damping model taking into account the effects of frequency, temperature and different damping materials for individual layers. A curve-fitting procedure used to obtain the Biot constants for different damping materials for each temperature is explained. The results from structural vibration analysis for selected beams agree with published closed-form results and results for the radiated noise for a sample beam structure obtained using a commercial BEM software is compared with the acoustical results of the same beam with using the Biot damping model. The extension of the Biot damping model is demonstrated to study MDOF (Multiple Degrees of Freedom) dynamics equations of a discrete system in order to introduce different types of viscoelastic damping materials. The mechanical properties of viscoelastic damping materials such as shear modulus and loss factor change with respect to different ambient temperatures and frequencies. The application of multiple-layer treatment increases the damping characteristic of the structure significantly and thus helps to attenuate the vibration and noise for a broad range of frequency and temperature. The main contributions of this dissertation include the following three major tasks: 1) Study of the viscoelastic damping mechanism and the dynamics equation of a multilayer damped system incorporating the Biot damping model. 2) Building the Finite Element Method (FEM) model of the multiple-layer constrained viscoelastic damping beam and conducting the vibration analysis. 3) Extending the vibration problem to the Boundary Element Method (BEM) based acoustical problem and comparing the results with commercial simulation software.
Resumo:
Light-frame wood buildings are widely built in the United States (U.S.). Natural hazards cause huge losses to light-frame wood construction. This study proposes methodologies and a framework to evaluate the performance and risk of light-frame wood construction. Performance-based engineering (PBE) aims to ensure that a building achieves the desired performance objectives when subjected to hazard loads. In this study, the collapse risk of a typical one-story light-frame wood building is determined using the Incremental Dynamic Analysis method. The collapse risks of buildings at four sites in the Eastern, Western, and Central regions of U.S. are evaluated. Various sources of uncertainties are considered in the collapse risk assessment so that the influence of uncertainties on the collapse risk of lightframe wood construction is evaluated. The collapse risks of the same building subjected to maximum considered earthquakes at different seismic zones are found to be non-uniform. In certain areas in the U.S., the snow accumulation is significant and causes huge economic losses and threatens life safety. Limited study has been performed to investigate the snow hazard when combined with a seismic hazard. A Filtered Poisson Process (FPP) model is developed in this study, overcoming the shortcomings of the typically used Bernoulli model. The FPP model is validated by comparing the simulation results to weather records obtained from the National Climatic Data Center. The FPP model is applied in the proposed framework to assess the risk of a light-frame wood building subjected to combined snow and earthquake loads. The snow accumulation has a significant influence on the seismic losses of the building. The Bernoulli snow model underestimates the seismic loss of buildings in areas with snow accumulation. An object-oriented framework is proposed in this study to performrisk assessment for lightframe wood construction. For home owners and stake holders, risks in terms of economic losses is much easier to understand than engineering parameters (e.g., inter story drift). The proposed framework is used in two applications. One is to assess the loss of the building subjected to mainshock-aftershock sequences. Aftershock and downtime costs are found to be important factors in the assessment of seismic losses. The framework is also applied to a wood building in the state of Washington to assess the loss of the building subjected to combined earthquake and snow loads. The proposed framework is proven to be an appropriate tool for risk assessment of buildings subjected to multiple hazards. Limitations and future works are also identified.
Resumo:
A combinatorial protocol (CP) is introduced here to interface it with the multiple linear regression (MLR) for variable selection. The efficiency of CP-MLR is primarily based on the restriction of entry of correlated variables to the model development stage. It has been used for the analysis of Selwood et al data set [16], and the obtained models are compared with those reported from GFA [8] and MUSEUM [9] approaches. For this data set CP-MLR could identify three highly independent models (27, 28 and 31) with Q2 value in the range of 0.632-0.518. Also, these models are divergent and unique. Even though, the present study does not share any models with GFA [8], and MUSEUM [9] results, there are several descriptors common to all these studies, including the present one. Also a simulation is carried out on the same data set to explain the model formation in CP-MLR. The results demonstrate that the proposed method should be able to offer solutions to data sets with 50 to 60 descriptors in reasonable time frame. By carefully selecting the inter-parameter correlation cutoff values in CP-MLR one can identify divergent models and handle data sets larger than the present one without involving excessive computer time.
Resumo:
OBJECTIVE Texture analysis is an alternative method to quantitatively assess MR-images. In this study, we introduce dynamic texture parameter analysis (DTPA), a novel technique to investigate the temporal evolution of texture parameters using dynamic susceptibility contrast enhanced (DSCE) imaging. Here, we aim to introduce the method and its application on enhancing lesions (EL), non-enhancing lesions (NEL) and normal appearing white matter (NAWM) in multiple sclerosis (MS). METHODS We investigated 18 patients with MS and clinical isolated syndrome (CIS), according to the 2010 McDonald's criteria using DSCE imaging at different field strengths (1.5 and 3 Tesla). Tissues of interest (TOIs) were defined within 27 EL, 29 NEL and 37 NAWM areas after normalization and eight histogram-based texture parameter maps (TPMs) were computed. TPMs quantify the heterogeneity of the TOI. For every TOI, the average, variance, skewness, kurtosis and variance-of-the-variance statistical parameters were calculated. These TOI parameters were further analyzed using one-way ANOVA followed by multiple Wilcoxon sum rank testing corrected for multiple comparisons. RESULTS Tissue- and time-dependent differences were observed in the dynamics of computed texture parameters. Sixteen parameters discriminated between EL, NEL and NAWM (pAVG = 0.0005). Significant differences in the DTPA texture maps were found during inflow (52 parameters), outflow (40 parameters) and reperfusion (62 parameters). The strongest discriminators among the TPMs were observed in the variance-related parameters, while skewness and kurtosis TPMs were in general less sensitive to detect differences between the tissues. CONCLUSION DTPA of DSCE image time series revealed characteristic time responses for ELs, NELs and NAWM. This may be further used for a refined quantitative grading of MS lesions during their evolution from acute to chronic state. DTPA discriminates lesions beyond features of enhancement or T2-hypersignal, on a numeric scale allowing for a more subtle grading of MS-lesions.