829 resultados para Multi-classifier systems
Resumo:
Despite the abundant availability of protocols and application for peer-to-peer file sharing, several drawbacks are still present in the field. Among most notable drawbacks is the lack of a simple and interoperable way to share information among independent peer-to-peer networks. Another drawback is the requirement that the shared content can be accessed only by a limited number of compatible applications, making impossible their access to others applications and system. In this work we present a new approach for peer-to-peer data indexing, focused on organization and retrieval of metadata which describes the shared content. This approach results in a common and interoperable infrastructure, which provides a transparent access to data shared on multiple data sharing networks via a simple API. The proposed approach is evaluated using a case study, implemented as a cross-platform extension to Mozilla Firefox browser, and demonstrates the advantages of such interoperability over conventional distributed data access strategies. © 2009 IEEE.
Resumo:
Distribution networks paradigm is changing currently requiring improved methodologies and tools for network analysis and planning. A relevant issue is analyzing the impact of the Distributed Generation penetration in passive networks considering different operation scenarios. Studying DG optimal siting and sizing the planner can identify the network behavior in presence of DG. Many approaches for the optimal DG allocation problem successfully used multi-objective optimization techniques. So this paper contributes to the fundamental stage of multi-objective optimization of finding the Pareto optimal solutions set. It is proposed the application of a Multi-objective Tabu Search and it was verified a better performance comparing to the NSGA-II method. © 2009 IEEE.
Resumo:
A decentralized solution method to the AC power flow problem in power systems with interconnected areas is presented. The proposed methodology allows finding the operation point of a particular area without explicit knowledge of network data of adjacent areas, being only necessary to exchange border information related to the interconnection lines between areas. The methodology is based on the decomposition of the first-order optimality conditions of the AC power flow, which is formulated as a nonlinear programming problem. A 9-bus didactic system, the IEEE Three Area RTS-96 and the IEEE 118 bus test systems are used in order to show the operation and effectiveness of the distributed AC power flow.
Resumo:
The Cladocera assemblages in two cascade reservoirs located in the Paranapanema River in Brazil were studied during two consecutive years. Upstream Chavantes Reservoir is an accumulation system, with a long water retention time, high depth and oligo-mesotrophic status. The downstream Salto Grande Reservoir is a small, run-of-river reservoir, with a short water retention time, shallow depth and meso-eutrophic status. The goal of this study was to determine the inter- and intra-reservoir limnological differences with emphasis on the Cladocerans assemblages. The following questions were posed: (i) what are the seasonal dynamics of the reservoir spatial structures; (ii) how dynamics, seasonally, is the reservoirs spatial structure; and (iii) are the reservoir independent systems? A total of 43 Cladoceran species were identified in this study. Ceriodaphnia silvestrii was the most abundant and frequent species found in Chavantes Reservoir, while C. cornuta was most abundant and frequent in Salto Grande Reservoir. The Cladoceran species richness differed significantly among sampling sites for both reservoirs. In terms of abundance, there was a significant variation among sampling sites and periods for both reservoirs. A cluster analysis indicated a higher similarity among the deeper compartments, and the intermediate river-reservoir zones was grouped with the riverine sampling sites. For the smaller Salto Grande Reservoir, the entrance of a middle size tributary causes major changes in the system. A distinct environment was observed in the river mouth zone of another small tributary, representing a shallow environment with aquatic macrophyte stands. A canonical correlation analysis between environmental variables and Cladoceran abundance explained 75% of the data variability, and a complementary factorial analysis explained 65% of the variability. The spatial compartmentalization of the reservoirs, as well as the particular characteristics of the two study reservoirs, directly influenced the structure of the Cladoceran assemblages. The conditions of the lacustrine (dam) zone of the larger Chavantes Reservoir were reflected in the upstream zone of the smaller downstream Salto Grande Reservoir, highlighting the importance of plankton exportation in reservoir cascade systems. The comparative spatial-temporal analysis indicated conspicuous differences between the two reservoirs, reinforcing the necessity of considering tropical/subtropical reservoirs as complex, multi-compartmental water systems. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Asia Pty Ltd.
Resumo:
Cuttings return analysis is an important tool to detect and prevent problems during the petroleum well drilling process. Several measurements and tools have been developed for drilling problems detection, including mud logging, PWD and downhole torque information. Cuttings flow meters were developed in the past to provide information regarding cuttings return at the shale shakers. Their use, however, significantly impact the operation including rig space issues, interferences in geological analysis besides, additional personel required. This article proposes a non intrusive system to analyze the cuttings concentration at the shale shakers, which can indicate problems during drilling process, such as landslide, the collapse of the well borehole walls. Cuttings images are acquired by a high definition camera installed above the shakers and sent to a computer coupled with a data analysis system which aims the quantification and closure of a cuttings material balance in the well surface system domain. No additional people at the rigsite are required to operate the system. Modern Artificial intelligence techniques are used for pattern recognition and data analysis. Techniques include the Optimum-Path Forest (OPF), Artificial Neural Network using Multilayer Perceptrons (ANN-MLP), Support Vector Machines (SVM) and a Bayesian Classifier (BC). Field test results conducted on offshore floating vessels are presented. Results show the robustness of the proposed system, which can be also integrated with other data to improve the efficiency of drilling problems detection. Copyright 2010, IADC/SPE Drilling Conference and Exhibition.
Resumo:
This paper presents the development of an multi-projection stereoscopic dental arches application with semantic descriptions. The first section presents the concepts of the used technologies. Applications and examples are demonstrated. Finally, is presented the physical structure and the developed system, where a 3D dental arch is used as a model and can be viewed in multi-projection, thereby, providing greater user's immersion. ©2010 IEEE.
Resumo:
This paper adjusts decentralized OPF optimization to the AC power flow problem in power systems with interconnected areas operated by diferent transmission system operators (TSO). The proposed methodology allows finding the operation point of a particular area without explicit knowledge of network data of the other interconnected areas, being only necessary to exchange border information related to the tie-lines between areas. The methodology is based on the decomposition of the first-order optimality conditions of the AC power flow, which is formulated as a nonlinear programming problem. To allow better visualization of the concept of independent operation of each TSO, an artificial neural network have been used for computing border information of the interconnected TSOs. A multi-area Power Flow tool can be seen as a basic building block able to address a large number of problems under a multi-TSO competitive market philosophy. The IEEE RTS-96 power system is used in order to show the operation and effectiveness of the decentralized AC Power Flow. ©2010 IEEE.
Resumo:
This paper proposes a heuristic constructive multi-start algorithm (HCMA) to distribution system restoration in real time considering distributed generators installed in the system. The problem is modeled as nonlinear mixed integer and considers the two main goals of the restoration of distribution networks: minimizing the number of consumers without power and the number of switching. The proposed algorithm is implemented in C++ programming language and tested using a large real-life distribution system. The results show that the proposed algorithm is able to provide a set of feasible and good quality solutions in a suitable time for the problem. © 2011 IEEE.
Resumo:
This paper presents a new methodology for solving the optimal VAr planning problem in multi-area electric power systems, using the Dantzig-Wolfe decomposition. The original multi-area problem is decomposed into subproblems (one for each area) and a master problem (coordinator). The solution of the VAr planning problem in each area is based on the application of successive linear programming, and the coordination scheme is based on the reactive power marginal costs in the border bus. The aim of the model is to provide coordinated mechanisms to carry out the VAr planning studies maximizing autonomy and confidentiality for each area, assuring global economy to the whole system. Using the mathematical model and computational implementation of the proposed methodology, numerical results are presented for two interconnected systems, each of them composed of three equal subsystems formed by IEEE30 and IEEE118 test systems. © 2011 IEEE.
Resumo:
Due to the renewed interest in distributed generation (DG), the number of DG units incorporated in distribution systems has been rapidly increasing in the past few years. This situation requires new analysis tools for understanding system performance, and taking advantage of the potential benefits of DG. This paper presents an evolutionary multi-objective programming approach to determine the optimal operation of DG in distribution systems. The objectives are the minimization of the system power losses and operation cost of the DG units. The proposed approach also considers the inherent stochasticity of DG technologies powered by renewable resources. Some tests were carried out on the IEEE 34 bus distribution test system showing the robustness and applicability of the proposed methodology. © 2011 IEEE.
Resumo:
The Optimum-Path Forest (OPF) classifier is a recent and promising method for pattern recognition, with a fast training algorithm and good accuracy results. Therefore, the investigation of a combining method for this kind of classifier can be important for many applications. In this paper we report a fast method to combine OPF-based classifiers trained with disjoint training subsets. Given a fixed number of subsets, the algorithm chooses random samples, without replacement, from the original training set. Each subset accuracy is improved by a learning procedure. The final decision is given by majority vote. Experiments with simulated and real data sets showed that the proposed combining method is more efficient and effective than naive approach provided some conditions. It was also showed that OPF training step runs faster for a series of small subsets than for the whole training set. The combining scheme was also designed to support parallel or distributed processing, speeding up the procedure even more. © 2011 Springer-Verlag.
Resumo:
Distributed Generation, microgrid technologies, two-way communication systems, and demand response programs are issues that are being studied in recent years within the concept of smart grids. At some level of enough penetration, the Distributed Generators (DGs) can provide benefits for sub-transmission and transmission systems through the so-called ancillary services. This work is focused on the ancillary service of reactive power support provided by DGs, specifically Wind Turbine Generators (WTGs), with high level of impact on transmission systems. The main objective of this work is to propose an optimization methodology to price this service by determining the costs in which a DG incurs when it loses sales opportunity of active power, i.e, by determining the Loss of Opportunity Costs (LOC). LOC occur when more reactive power is required than available, and the active power generation has to be reduced in order to increase the reactive power capacity. In the optimization process, three objectives are considered: active power generation costs of DGs, voltage stability margin of the system, and losses in the lines of the network. Uncertainties of WTGs are reduced solving multi-objective optimal power flows in multiple probabilistic scenarios constructed by Monte Carlo simulations, and modeling the time series associated with the active power generation of each WTG via Fuzzy Logic and Markov Chains. The proposed methodology was tested using the IEEE 14 bus test system with two WTGs installed. © 2011 IEEE.
Resumo:
The multi-relational Data Mining approach has emerged as alternative to the analysis of structured data, such as relational databases. Unlike traditional algorithms, the multi-relational proposals allow mining directly multiple tables, avoiding the costly join operations. In this paper, is presented a comparative study involving the traditional Patricia Mine algorithm and its corresponding multi-relational proposed, MR-Radix in order to evaluate the performance of two approaches for mining association rules are used for relational databases. This study presents two original contributions: the proposition of an algorithm multi-relational MR-Radix, which is efficient for use in relational databases, both in terms of execution time and in relation to memory usage and the presentation of the empirical approach multirelational advantage in performance over several tables, which avoids the costly join operations from multiple tables. © 2011 IEEE.
Resumo:
Multi-relational data mining enables pattern mining from multiple tables. The existing multi-relational mining association rules algorithms are not able to process large volumes of data, because the amount of memory required exceeds the amount available. The proposed algorithm MRRadix presents a framework that promotes the optimization of memory usage. It also uses the concept of partitioning to handle large volumes of data. The original contribution of this proposal is enable a superior performance when compared to other related algorithms and moreover successfully concludes the task of mining association rules in large databases, bypass the problem of available memory. One of the tests showed that the MR-Radix presents fourteen times less memory usage than the GFP-growth. © 2011 IEEE.
Resumo:
Recently, a generalized passivity concept for linear multivariable systems was obtained which allows circumventing the restrictiveness of the usual passivity concept. The latter is associated with the classical SPR (Strictly Positive Real) condition whereas the new concept of passivity is associated with the so called WSPR condition and its advantage in multivariable systems is that it does not require a restrictive symmetry condition of SPR systems. As a result, it allows the design of multivariable adaptive control that, unlike some existing factorization approaches, does not imply in additional overparameterization of the adaptive controller. In this paper, we complete a previously established WSPR sufficient condition and prove that it is also necessary. We also propose some methods of passification by either premultiplying the system output tracking error vector or the system input vector by an adequate passifying matrix multiplier, so that the resulting input/output transfer function becomes WSPR. The efficiency of our proposals are illustrated by simulation utilizing a well known robotics adaptive visual servoing problem. © 2011 IFAC.