928 resultados para Morris Canal and Banking Company.


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Technology roadmapping has been applied successfully in many industrial organizations. Designed to facilitate and communicate technology strategy and planning, roadmaps (or, as in Europe, route maps) can take a variety of specific forms, depending on the type (opportunities, capabilities, products, technologies, etc.) and particular company context. While roadmaps are generally manifest in a number of "program elements or levels" superimposed upon a timeline, experienced mappers often claim that it is "roadmapping" rather than "the roadmap" that generates the value. This special report focuses primarily on product and technology roadmaps. Following an introduction to the evolution, purpose and applications of corporate/industry roadmapping, four industry-developed articles examine roadmapping in Lucent Technologies, Rockwell Automation, the pharmaceutical/biotechnology industry, and UK-based Domino Printing Sciences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a fast-switching (sub-millisecond) phase grating based upon a polymer stabilized short-pitch chiral nematic liquid crystal that is electrically addressed using in-plane electric fields. The combination of the short-pitch and the polymer stabilization enables the diffraction pattern to be switched on and off reversibly in 600 μs. Results are presented on the far-field diffraction pattern along with the intensity of the diffraction orders as a function of the applied electric field and the response times. © 2011 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a chiral nematic liquid crystal with a negative dielectric anisotropy, it is possible to switch between band-edge laser emission and random laser emission with an electric field. At low frequencies (1 kHz), random laser emission is observed as a result of scattering due to electro-hydrodynamic instabilities. However, band-edge laser emission is found to occur at higher frequencies (5 kHz), where the helix is stabilized due to dielectric coupling. These results demonstrate a method by which the linewidth of the laser source can be readily controlled externally (from 4 nm to 0.5 nm) using electric fields. © 2012 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Smectic A liquid crystals, based upon molecular structures that consist of combined siloxane and mesogenic moieties, exhibit strong multiple scattering of light with and without the presence of an electric field. This paper demonstrates that when one adds a laser dye to these compounds it is possible to observe random laser emission under optical excitation, and that the output can be varied depending upon the scattering state that is induced by the electric field. Results are presented to show that the excitation threshold of a dynamic scattering state, consisting of chaotic motion due to electro-hydrodynamic instabilities, exhibits lower lasing excitation thresholds than the scattering states that exist in the absence of an applied electric field. However, the lowest threshold is observed for a dynamic scattering state that does not have the largest scattering strength but which occurs when there is optimization of the combined light absorption and scattering properties. © 2012 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A promising approach to the fabrication of materials with nanoscale features is the transfer of liquid-crystalline structure to polymers. However, this has not been achieved in systems with full three-dimensional periodicity. Here we demonstrate the fabrication of self-assembled three-dimensional nanostructures by polymer templating blue phase I, a chiral liquid crystal with cubic symmetry. Blue phase I was photopolymerized and the remaining liquid crystal removed to create a porous free-standing cast, which retains the chiral three-dimensional structure of the blue phase, yet contains no chiral additive molecules. The cast may in turn be used as a hard template for the fabrication of new materials. By refilling the cast with an achiral nematic liquid crystal, we created templated blue phases that have unprecedented thermal stability in the range -125 to 125 °C, and that act as both mirrorless lasers and switchable electro-optic devices. Blue-phase templated materials will facilitate advances in device architectures for photonics applications in particular.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A promising approach to the fabrication of materials with nanoscale features is the transfer of liquid-crystalline structure to polymers. However, this has not been achieved in systems with full three-dimensional periodicity. Here we demonstrate the fabrication of self-assembled three-dimensional nanostructures by polymer templating blue phase I, a chiral liquid crystal with cubic symmetry. Blue phase I was photopolymerized and the remaining liquid crystal removed to create a porous free-standing cast, which retains the chiral three-dimensional structure of the blue phase, yet contains no chiral additive molecules. The cast may in turn be used as a hard template for the fabrication of new materials. By refilling the cast with an achiral nematic liquid crystal, we created templated blue phases that have unprecedented thermal stability in the range-125 to 125°C, and that act as both mirrorless lasers and switchable electro-optic devices. Blue-phase templated materials will facilitate advances in device architectures for photonics applications in particular. © 2012 Macmillan Publishers Limited. All rights reserved.