930 resultados para Modification of the microflora
Phosphoglycerylethanolamine Posttranslational Modification of Plant Eukaryotic Elongation Factor 1α1
Resumo:
Eukaryotic elongation factor 1α (eEF-1A) is a multifunctional protein. There are three known posttranslational modifications of eEF-1A that could potentially affect its function. Except for phosphorylation, the other posttranslational modifications have not been demonstrated in plants. Using matrix-assisted laser desorption/ionization-mass spectrometry and peptide mass mapping, we show that carrot (Daucus carota L.) eEF-1A contains a phosphoglycerylethanolamine (PGE) posttranslational modification. eEF-1A was the only protein labeled with [14C]ethanolamine in carrot cells and was the predominant ethanolamine-labeled protein in Arabidopsis seedlings and tobacco (Nicotiana tabacum L.) cell cultures. In vivo-labeling studies using [3H]glycerol, [32P]Pi, [14C]myristic acid, and [14C]linoleic acid indicated that the entire phospholipid phosphatidylethanolamine is covalently attached to the protein. The PGE lipid modification did not affect the partitioning of eEF-1A in Triton X-114 or its actin-binding activity in in vitro assays. Our in vitro data indicate that this newly characterized posttranslational modification alone does not affect the function of eEF-1A. Therefore, the PGE lipid modification may work in combination with other posttranslational modifications to affect the distribution and the function of eEF-1A within the cell.
Resumo:
A covalently linked protein–protein conjugate between ThiF and ThiS thiocarboxylate was found in a partially purified coexpressed ThiF/ThiS protein mixture by using Fourier transform mass spectrometry. The Cys-184 of ThiF and the C terminus of ThiS thiocarboxylate were identified to be involved in the formation of this complex by using both mutagenesis and chemical modification methods. A complementation study of Escherichia coli thiF− using thiF(C184S) suggests that this conjugate is an essential intermediate involved in the biosynthesis of the thiazole moiety of thiamin. This ThiF/ThiS conjugate is the first characterized example of a unique acyldisulfide intermediate in a biosynthetic system. This protein conjugate is also an example of an ubiquitin-E1 like protein–protein conjugate in prokaryotes and supports a strong evolutionary link between thiamin biosynthesis and the ubiquitin conjugating system.
Resumo:
Long-term potentiation (LTP) is a form of synaptic memory that may subserve developmental and behavioral plasticity. An intensively investigated form of LTP is dependent upon N-methyl-D-aspartate (NMDA) receptors and can be elicited in the dentate gyrus and hippocampal CA1. Induction of this type of LTP is triggered by influx of Ca2+ through activated NMDA receptors, but the downstream mechanisms of induction, and even more so of LTP maintenance, remain controversial. It has been reported that the function of NMDA receptor channel can be regulated by protein tyrosine kinases and protein phosphatases and that inhibition of protein tyrosine kinases impairs induction of LTP. Herein we report that LTP in the dentate gyrus is specifically correlated with tyrosine phosphorylation of the NMDA receptor subunit 2B in an NMDA receptor-dependent manner. The effect is observed with a delay of several minutes after LTP induction and persists in vivo for several hours. The potential relevance of this post-translational modification to mechanisms of LTP and circuit plasticity is discussed.
Resumo:
To study the cleavage mechanism of bacterial Nase P RNA, we have synthesized precursor tRNA substrates carrying a single Rp- or Sp-phosphorothioate modification at the RNase P cleavage site. Both the Sp- and the Rp-diastereomer reduced the rate of processing by Escherichia coli RNase P RNA at least 1000-fold under conditions where the chemical step is rate-limiting. The Rp-modification had no effect and the Sp-modification had a moderate effect on precursor tRNA ground state binding to RNase P RNA. Processing of the Rp-diastereomeric substrate was largely restored in the presence of the "thiophilic" Cd2+ as the only divalent metal ion, demonstrating direct metal ion coordination to the (pro)-Rp substituent at the cleavage site and arguing against a specific role for Mg(2+)-ions at the pro-Sp oxygen. For the Rp-diastereomeric substrate, Hill plot analysis revealed a cooperative dependence upon [Cd2+] of nH = 1.8, consistent with a two-metal ion mechanism. In the presence of the Sp-modification, neither Mn2+ nor Cd2+ was able to restore detectable cleavage at the canonical site. Instead, the ribozyme promotes cleavage at the neighboring unmodified phosphodiester with low efficiency. Dramatic inhibition of the chemical step by both the Rp- and Sp-phosphorothioate modification is unprecedented among known ribozymes and points to unique features of transition state geometry in the RNase P RNA-catalyzed reaction.
Resumo:
Antioxidants may play an important role in preventing free radical damage associated with aging by interfering directly in the generation of radicals or by scavenging them. We investigated the effects of a high vitamin E and/or a high beta-carotene diet on aging of the anion transporter, band 3, in lymphocytes and brain. The band 3 proteins function as anion transporters, acid base regulators, C02 transporters, and structural proteins that provide a framework for membrane lipids and that link the plasma membrane to the cytoskeleton. Senescent cell antigen (SCA), which terminates the life of cells, is a degradation product of band 3. This study was conducted as a double-blind study in which eight groups of middle-aged or old mice received either high levels of beta-carotene and/or vitamin E or standard levels of these supplements in their diets. Anion transport kinetic assays were performed on isolated splenic lymphocytes. Immunoreactivity of an antibody that recognizes aging changes in old band 3 preceding generation of SCA was used to quantitate aged band 3 in brain tissue. Results indicate that vitamin E prevented the observed age-related decline in anion transport by lymphocytes and the generation of aged band 3 leading to SCA formation. beta-Carotene had no significant effect on the results of either assay. Since increased aged band 3 and decreased anion transport are initial steps in band 3 aging, which culminates in the generation of SCA and cellular removal, vitamin E prevents or delays aging of band 3-related proteins in lymphocytes and brain.
Resumo:
Beta-Lactamases are widespread in the bacterial world, where they are responsible for resistance to penicillins, cephalosporins, and related compounds, currently the most widely used antibacterial agents. Detailed structural and mechanistic understanding of these enzymes can be expected to guide the design of new antibacterial compounds resistant to their action. A number of high-resolution structures are available for class A beta-lactamases, whose catalytic mechanism involves the acylation of a serine residue at the active site. The identity of the general base which participates in the activation of this serine residue during catalysis has been the subject of controversy, both a lysine residue and a glutamic acid residue having been proposed as candidates for this role. We have used the pH dependence of chemical modification of epsilon-amino groups by 2,4,6,-trinitrobenzenesulfonate and the pH dependence of the epsilon-methylene 1H and 13C chemical shifts (in enzyme selectively labeled with [epsilon-13C]lysine) to estimate the pKa of the relevant lysine residue, lysine-73, of TEM-1 beta-lactamase. Both methods show that the pKa of this residue is > 10, making it very unlikely that this residue could act as a proton acceptor in catalysis. An alternative mechanism in which this role is performed by glutamate-166 through an intervening water molecule is described.
Resumo:
Multiubiquitin chain attachment is a key step leading to the selective degradation of abnormal polypeptides and many important regulatory proteins by the eukaryotic 26S proteasome. However, the mechanism by which the 26S complex recognizes this posttranslational modification is unknown. Using synthetic multiubiquitin chains to probe an expression library for interacting proteins, we have isolated an Arabidopsis cDNA, designated MBP1, that encodes a 41-kDa acidic protein exhibiting high affinity for chains, especially those containing four or more ubiquitins. Based on similar physical and immunological properties, multiubiquitin binding affinities, and peptide sequence, MBP1 is homologous to subunit 5a of the human 26S proteasome. Structurally related proteins also exist in yeast, Caenorhabditis, and other plant species. Given their binding properties, association with the 26S proteasome, and widespread distribution, MBP1, S5a, and related proteins likely function as essential ubiquitin recognition components of the 26S proteasome.
Resumo:
The adult skeletal muscle Na+ channel mu1 possesses a highly conserved segment between subunit domains III and IV containing a consensus protein kinase C (PKC) phosphorylation site that, in the neuronal isoform, acts as a master control for "convergent" regulation by PKC and cAMP-dependent protein kinase. It lacks an approximately 200-aa segment between domains I and II though to modulate channel gating. We here demonstrate that mu1 is regulated by PKC (but not cAMP-dependent protein kinase) in a manner distinct from that observed for the neuronal isoforms, suggesting that under the same conditions muscle excitation could be uncoupled from motor neuron input. Maximal phosphorylation by PKC, in the presence of phosphatase inhibitors, reduced peak Na+ currents by approximately 90% by decreasing the maximal conductance, caused a -15 mV shift in the midpoint of steady-state inactivation, and caused a slight speeding of inactivation. Surprisingly, these effects were not affected by mutation of the conserved serine (serine-1321) in the interdomain III-IV loop. the pattern of current suppression and gating modification by PKC resembles the response of muscle Na+ channels to inhibitory factors present in the serum and cerebrospinal fluid of patients with Guillain-Barré syndrome, multiple sclerosis, and idiopathic demyelinating polyradiculoneuritis.
A single-stranded DNA binding protein binds the origin of replication of the duplex kinetoplast DNA.
Resumo:
Replication of the kinetoplast DNA (kDNA) minicircle of trypanosomatids initiates at a conserved 12-nt sequence, 5'-GGGGTTGGTGTA-3', termed the universal minicircle sequence (UMS). A sequence-specific single-stranded DNA-binding protein from Crithidia fasciculata binds the heavy strand of the 12-mer UMS. Whereas this UMS-binding protein (UMSBP) does not bind a duplex UMS dodecamer, it binds the double-stranded kDNA minicircle as well as a duplex minicircle fragment containing the origin-associated UMS. Binding of the minicircle origin region by the single-stranded DNA binding protein suggested the local unwinding of the DNA double helix at this site. Modification of thymine residues at this site by KMnO4 revealed that the UMS resides within an unwound or otherwise sharply distorted DNA at the minicircle origin region. Computer analysis predicts the sequence-directed curving of the minicircle origin region. Electrophoresis of a minicircle fragment containing the origin region in polyacrylamide gels revealed a significantly lower electrophoretic mobility than expected from its length. The fragment anomalous electrophoretic mobility is displayed only in its native conformation and is dependent on temperature and gel porosity, indicating the local curving of the DNA double helix. We suggest that binding of UMSBP at the minicircle origin of replication is possible through local unwinding of the DNA double helix at the UMS site. It is hypothesized here that this local melting is initiated through the untwisting of unstacked dinucleotide sequences at the bent origin site.
Resumo:
We have developed a modified rhodamine (Rho) staining procedure to study uptake and efflux in murine hematopoietic stem cells. Distinct populations of Rho++ (bright), Rho+ (dull), and Rho- (negative) cells could be discriminated. Sorted Rho- cells were subjected to a second Rho staining procedure with the P-glycoprotein blocking agent verapamil (VP). Most cells became Rho positive [Rho-/Rho(VP)+ cells] and some remained Rho negative [Rho-/Rho(VP)- cells]. These cell fractions were characterized by their marrow-repopulating ability in a syngeneic, sex-mismatch transplantation model. Short-term repopulating ability was determined by recipient survival for at least 6 weeks after lethal irradiation and transplantation--i.e., radioprotection. Long-term repopulating ability at 6 months after transplantation was measured by fluorescence in situ hybridization with a Y-chromosome-specific probe, by graft function and recipient survival. Marrow-repopulating cells were mainly present in the small Rho- cell fraction. Transplantation of 30 Rho- cells resulted in 50% radioprotection and > 80% donor repopulation in marrow, spleen, and thymus 6 months after transplantation. Cotransplantation of cells from both fractions in individual mice directly showed that within this Rho- cell fraction, the Rho-/Rho(VP)+ cells exhibited mainly short-term and the Rho-/Rho(VP)- cells exhibited mainly long-term repopulating ability. Our results indicate that hematopoietic stem cells have relatively high P-glycoprotein expression and that the cells responsible for long-term repopulating ability can be separated from cells exhibiting short-term repopulating ability, probably by a reduced mitochondrial Rho-binding capacity.
Resumo:
We investigated the relationship between the fusion selectivity of the envelope glycoprotein (env) and the tropism of different human immunodeficiency virus type 1 (HIV-1) isolates for CD4+ human T-cell lines vs. primary macrophages. Recombinant vaccinia viruses were prepared encoding the envs from several well-characterized HIV-1 isolates with distinct cytotropisms. Cells expressing the recombinant envs were mixed with various CD4+ partner cell types; cell fusion was monitored by a quantitative reporter gene assay and by syncytia formation. With CD4+ continuous cell lines as partners (T-cell lines, HeLa cells expressing recombinant CD4), efficient fusion occurred with the envs from T-cell line-tropic isolates (IIIB, LAV, SF2, and RF) but not with the envs from macrophage-tropic isolates (JR-FL, SF162, ADA, and Ba-L). The opposite selectivity pattern was observed with primary macrophages as cell partners; stronger fusion occurred with the envs from the macrophage-tropic than from the T-cell line-tropic isolates. All the envs showed fusion activity with peripheral blood mononuclear cells as partners, consistent with the ability of this cell population to support replication of all the corresponding HIV-1 isolates. These fusion selectivities were maintained irrespective of the cell type used to express env, thereby excluding a role for differential host cell modification. We conclude that the intrinsic fusion selectivity of env plays a major role in the tropism of a HIV-1 isolate for infection of CD4+ T-cell lines vs. primary macrophages, presumably by determining the selectivity of virus entry and cell fusion.
Resumo:
Extensive proteolytic digestion of Na+,K(+)-ATPase (EC 3.6.1.37) by trypsin produces a preparation where most of the extramembrane portions of the alpha subunit have been digested away and the beta subunit remains essentially intact. The fragment Gln-737-Arg-829 of the Na+,K(+)-ATPase alpha subunit, which includes the putative transmembrane hairpin M5-M6, is readily, selectively, and irreversibly released from the posttryptic membrane preparation after incubation at 37 degrees C for several minutes. Once released from the membrane, the fragment aggregates but remains water soluble. Occlusion of K+ or Rb+ specifically prevents release of the Gln-737-Arg-829 fragment into the supernatant. Labeling of the posttryptic membrane preparation with cysteine-directed reagents revealed that Cys-802 (which is thought to be located within the M6 segment) is protected against the modification by Rb+ while this fragment is in the membrane but can be readily modified upon release. Cation occlusion apparently alters the folding and/or disposition of the M5-M6 fragment in the membrane in a way that does not occur when the fragment migrates to the aqueous phase. The ligand-dependent disposition of the M5-M6 hairpin in the membrane along with recent labeling studies suggest a key role for this segment in cation pumping by Na+,K(+)-ATPase.
Resumo:
Polysialic acid is a developmentally regulated posttranslational modification of the neural cell adhesion molecule (N-CAM). It has been suggested that this large anionic carbohydrate modulates the adhesive property of N-CAM, but the precise function of polysialic acid is not known. Here we describe the isolation and functional expression of a cDNA encoding a human polysialyltransferase. For this expression cloning, COS-1 cells were cotransfected with a human fetal brain cDNA library and a cDNA encoding human N-CAM. Transfected COS-1 cells were stained with a monoclonal antibody specific for polysialic acid and enriched by fluorescence-activated cell sorting. Sibling selection of recovered plasmids resulted in a cDNA clone that directs the expression of polysialic acid on the cell surface. The deduced amino acid sequence indicates that the polysialyltransferase shares a common sequence motif with other sialyltransferases cloned so far. The polysialyltransferase is, however, distinct by having two clusters of basic amino acids. The amount of the polysialyltransferase transcripts correlates well with the formation of polysialic acid in various human tissues, and is abundant in the fetal brain but not in the adult brain. Moreover, HeLa cells stably expressing polysialic acid and N-CAM promoted neurite outgrowth and sprouting. These results indicate that the cloned polysialyltransferase forms polysialylated, embryonic N-CAM, which is critical for plasticity of neural cells.
Resumo:
O-linked N-acetylglucosamine (O-GlcNAc) is an abundant and dynamic posttranslational modification composed of a single monosaccharide, GlcNAc, glycosidically composed of a single monosaccharide, GlcNAc, glycosidically linked to the side-chain hydroxyl of serine or threonine residues. Although O-GlcNAc occurs on a myriad of nuclear and cytoplasmic proteins, only a few have thus far been identified. These O-GlcNAc-bearing proteins are also modified by phosphorylation and form reversible multimeric complexes. Here we present evidence for O-GlcNAc glycosylation of the oncoprotein c-Myc, a helix-loop-helix/leucine zipper phosphoprotein that heterodimerizes with Max and participates in the regulation of gene transcription in normal and neoplastic cells. O-GlcNAc modification of c-Myc is shown by three different methods: (i) demonstration of lectin binding to in vitro translated protein using a protein-protein interaction mobility-shift assay; (ii) glycosidase or glycosyltransferase treatment of in vitro translated protein analyzed by lectin affinity chromatography; and (iii) direct characterization of the sugar moieties on purified recombinant protein overexpressed in either insect cells or Chinese hamster ovary cells. Analyses of serial deletion mutants of c-Myc further suggest that the O-GlcNAc site(s) are located within or near the N-terminal transcription activation/malignant transformation domain, a region where mutations of c-Myc that are frequently found in Burkitt and AIDS-related lymphomas cluster.
Resumo:
A rider to a US law, the Consolidated and Continuing Appropriations Act, 2013, known as the Farmer Assurance Provision, encourages the large-scale genetic modification and global distribution of agricultural crops, thereby undermining the Food and Agriculture Organization of the United Nations' determination that food security rests on biodiversity. The rider blocks the US Department of Agriculture's mandate to prohibit farmers from growing crops from biotechnological seeds where the courts have found that this farm practice may cause damage to human health and/or degrade the environment. Despite genetically modified organisms (GMOs) reducing unwanted traits in plants, the paper supports the UN's mission for biodiversity and that more long-term testing was (and is) needed for GMO products, developed from 1994 on, before a hasty piece of Congressional legislation as was made in this case.