918 resultados para Models in art
Resumo:
Valuation is often said to be “an art not a science” but this relates to the techniques employed to calculate value not to the underlying concept itself. Valuation is the process of estimating price in the market place. Yet, such an estimation will be affected by uncertainties. Uncertainty in the comparable information available; uncertainty in the current and future market conditions and uncertainty in the specific inputs for the subject property. These input uncertainties will translate into an uncertainty with the output figure, the valuation. The degree of the uncertainties will vary according to the level of market activity; the more active a market, the more credence will be given to the input information. In the UK at the moment the Royal Institution of Chartered Surveyors (RICS) is considering ways in which the uncertainty of the output figure, the valuation, can be conveyed to the use of the valuation, but as yet no definitive view has been taken apart from a single Guidance Note (GN5, RICS 2003) stressing the importance of recognising uncertainty in valuation but not proffering any particular solution. One of the major problems is that Valuation models (in the UK) are based upon comparable information and rely upon single inputs. They are not probability based, yet uncertainty is probability driven. In this paper, we discuss the issues underlying uncertainty in valuations and suggest a probability-based model (using Crystal Ball) to address the shortcomings of the current model.
Resumo:
As part of the DAPPLE programme two large scale urban tracer experiments using multiple simultaneous releases of cyclic perfluoroalkanes from fixed location point sources was performed. The receptor concentrations along with relevant meteorological parameters measured are compared with a three screening dispersion models in order to best predict the decay of pollution sources with respect to distance. It is shown here that the simple dispersion models tested here can provide a reasonable upper bound estimate of the maximum concentrations measured with an empirical model derived from field observations and wind tunnel studies providing the best estimate. An indoor receptor was also used to assess indoor concentrations and their pertinence to commonly used evacuation procedures.
Resumo:
Models play a vital role in supporting a range of activities in numerous domains. We rely on models to support the design, visualisation, analysis and representation of parts of the world around us, and as such significant research effort has been invested into numerous areas of modelling; including support for model semantics, dynamic states and behaviour, temporal data storage and visualisation. Whilst these efforts have increased our capabilities and allowed us to create increasingly powerful software-based models, the process of developing models, supporting tools and /or data structures remains difficult, expensive and error-prone. In this paper we define from literature the key factors in assessing a model’s quality and usefulness: semantic richness, support for dynamic states and object behaviour, temporal data storage and visualisation. We also identify a number of shortcomings in both existing modelling standards and model development processes and propose a unified generic process to guide users through the development of semantically rich, dynamic and temporal models.
Resumo:
The general stability theory of nonlinear receding horizon controllers has attracted much attention over the last fifteen years, and many algorithms have been proposed to ensure closed-loop stability. On the other hand many reports exist regarding the use of artificial neural network models in nonlinear receding horizon control. However, little attention has been given to the stability issue of these specific controllers. This paper addresses this problem and proposes to cast the nonlinear receding horizon control based on neural network models within the framework of an existing stabilising algorithm.
Resumo:
Valuation is often said to be “an art not a science” but this relates to the techniques employed to calculate value not to the underlying concept itself. Valuation is the process of estimating price in the market place. Yet, such an estimation will be affected by uncertainties. Uncertainty in the comparable information available; uncertainty in the current and future market conditions and uncertainty in the specific inputs for the subject property. These input uncertainties will translate into an uncertainty with the output figure, the valuation. The degree of the uncertainties will vary according to the level of market activity; the more active a market, the more credence will be given to the input information. In the UK at the moment the Royal Institution of Chartered Surveyors (RICS) is considering ways in which the uncertainty of the output figure, the valuation, can be conveyed to the use of the valuation, but as yet no definitive view has been taken. One of the major problems is that Valuation models (in the UK) are based upon comparable information and rely upon single inputs. They are not probability based, yet uncertainty is probability driven. In this paper, we discuss the issues underlying uncertainty in valuations and suggest a probability-based model (using Crystal Ball) to address the shortcomings of the current model.
Resumo:
This paper proposes a solution to the problems associated with network latency within distributed virtual environments. It begins by discussing the advantages and disadvantages of synchronous and asynchronous distributed models, in the areas of user and object representation and user-to-user interaction. By introducing a hybrid solution, which utilises the concept of a causal surface, the advantages of both synchronous and asynchronous models are combined. Object distortion is a characteristic feature of the hybrid system, and this is proposed as a solution which facilitates dynamic real-time user collaboration. The final section covers implementation details, with reference to a prototype system available from the Internet.
Resumo:
For data assimilation in numerical weather prediction, the initial forecast-error covariance matrix Pf is required. For variational assimilation it is particularly important to prescribe an accurate initial matrix Pf, since Pf is either static (in the 3D-Var case) or constant at the beginning of each assimilation window (in the 4D-Var case). At large scales the atmospheric flow is well approximated by hydrostatic balance and this balance is strongly enforced in the initial matrix Pf used in operational variational assimilation systems such as that of the Met Office. However, at convective scales this balance does not necessarily hold any more. Here we examine the extent to which hydrostatic balance is valid in the vertical forecast-error covariances for high-resolution models in order to determine whether there is a need to relax this balance constraint in convective-scale data assimilation. We use the Met Office Global and Regional Ensemble Prediction System (MOGREPS) and a 1.5 km resolution version of the Unified Model for a case study characterized by the presence of convective activity. An ensemble of high-resolution forecasts valid up to three hours after the onset of convection is produced. We show that at 1.5 km resolution hydrostatic balance does not hold for forecast errors in regions of convection. This indicates that in the presence of convection hydrostatic balance should not be enforced in the covariance matrix used for variational data assimilation at this scale. The results show the need to investigate covariance models that may be better suited for convective-scale data assimilation. Finally, we give a measure of the balance present in the forecast perturbations as a function of the horizontal scale (from 3–90 km) using a set of diagnostics. Copyright © 2012 Royal Meteorological Society and British Crown Copyright, the Met Office
Resumo:
The idea of incorporating multiple models of linear rheology into a superensemble, to forge a consensus forecast from the individual model predictions, is investigated. The relative importance of the individual models in the so-called multimodel superensemble (MMSE) was inferred by evaluating their performance on a set of experimental training data, via nonlinear regression. The predictive ability of the MMSE model was tested by comparing its predictions on test data that were similar (in-sample) and dissimilar (out-of-sample) to the training data used in the calibration. For the in-sample forecasts, we found that the MMSE model easily outperformed the best constituent model. The presence of good individual models greatly enhanced the MMSE forecast, while the presence of some bad models in the superensemble also improved the MMSE forecast modestly. While the performance of the MMSE model on the out-of-sample training data was not as spectacular, it demonstrated the robustness of this approach.
Resumo:
The sensitivity to the horizontal resolution of the climate, anthropogenic climate change, and seasonal predictive skill of the ECMWF model has been studied as part of Project Athena—an international collaboration formed to test the hypothesis that substantial progress in simulating and predicting climate can be achieved if mesoscale and subsynoptic atmospheric phenomena are more realistically represented in climate models. In this study the experiments carried out with the ECMWF model (atmosphere only) are described in detail. Here, the focus is on the tropics and the Northern Hemisphere extratropics during boreal winter. The resolutions considered in Project Athena for the ECMWF model are T159 (126 km), T511 (39 km), T1279 (16 km), and T2047 (10 km). It was found that increasing horizontal resolution improves the tropical precipitation, the tropical atmospheric circulation, the frequency of occurrence of Euro-Atlantic blocking, and the representation of extratropical cyclones in large parts of the Northern Hemisphere extratropics. All of these improvements come from the increase in resolution from T159 to T511 with relatively small changes for further resolution increases to T1279 and T2047, although it should be noted that results from this very highest resolution are from a previously untested model version. Problems in simulating the Madden–Julian oscillation remain unchanged for all resolutions tested. There is some evidence that increasing horizontal resolution to T1279 leads to moderate increases in seasonal forecast skill during boreal winter in the tropics and Northern Hemisphere extratropics. Sensitivity experiments are discussed, which helps to foster a better understanding of some of the resolution dependence found for the ECMWF model in Project Athena
Resumo:
The Kalpana Very High Resolution Radiometer (VHRR) water vapour (WV) channel is very similar to the WV channel of the Meteosat Visible and Infrared Radiation Imager (MVIRI) on Meteosat-7, and both satellites observe the Indian subcontinent. Thus it is possible to compare the performance of VHRR and MVIRI in numerical weather prediction (NWP) models. In order to do so, the impact of Kalpana- and Meteosat-7-measured WV radiances was evaluated using analyses and forecasts of moisture, temperature, geopotential and winds, using the European Centre for Medium-range Weather Forecasts (ECMWF) NWP model. Compared with experiments using Meteosat-7, the experiments using Kalpana WV radiances show a similar fit to all observations and produce very similar forecasts.
Resumo:
It is becoming increasingly important to be able to verify the spatial accuracy of precipitation forecasts, especially with the advent of high-resolution numerical weather prediction (NWP) models. In this article, the fractions skill score (FSS) approach has been used to perform a scale-selective evaluation of precipitation forecasts during 2003 from the Met Office mesoscale model (12 km grid length). The investigation shows how skill varies with spatial scale, the scales over which the data assimilation (DA) adds most skill, and how the loss of that skill is dependent on both the spatial scale and the rainfall coverage being examined. Although these results come from a specific model, they demonstrate how this verification approach can provide a quantitative assessment of the spatial behaviour of new finer-resolution models and DA techniques.
Resumo:
This research presents a novel multi-functional system for medical Imaging-enabled Assistive Diagnosis (IAD). Although the IAD demonstrator has focused on abdominal images and supports the clinical diagnosis of kidneys using CT/MRI imaging, it can be adapted to work on image delineation, annotation and 3D real-size volumetric modelling of other organ structures such as the brain, spine, etc. The IAD provides advanced real-time 3D visualisation and measurements with fully automated functionalities as developed in two stages. In the first stage, via the clinically driven user interface, specialist clinicians use CT/MRI imaging datasets to accurately delineate and annotate the kidneys and their possible abnormalities, thus creating “3D Golden Standard Models”. Based on these models, in the second stage, clinical support staff i.e. medical technicians interactively define model-based rules and parameters for the integrated “Automatic Recognition Framework” to achieve results which are closest to that of the clinicians. These specific rules and parameters are stored in “Templates” and can later be used by any clinician to automatically identify organ structures i.e. kidneys and their possible abnormalities. The system also supports the transmission of these “Templates” to another expert for a second opinion. A 3D model of the body, the organs and their possible pathology with real metrics is also integrated. The automatic functionality was tested on eleven MRI datasets (comprising of 286 images) and the 3D models were validated by comparing them with the metrics from the corresponding “3D Golden Standard Models”. The system provides metrics for the evaluation of the results, in terms of Accuracy, Precision, Sensitivity, Specificity and Dice Similarity Coefficient (DSC) so as to enable benchmarking of its performance. The first IAD prototype has produced promising results as its performance accuracy based on the most widely deployed evaluation metric, DSC, yields 97% for the recognition of kidneys and 96% for their abnormalities; whilst across all the above evaluation metrics its performance ranges between 96% and 100%. Further development of the IAD system is in progress to extend and evaluate its clinical diagnostic support capability through development and integration of additional algorithms to offer fully computer-aided identification of other organs and their abnormalities based on CT/MRI/Ultra-sound Imaging.