960 resultados para Micromachined Beams


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the effects of niobium beam filtration on absorbed doses, on image density and contrast, and on photon spectra with conventional and high-frequency dental x-ray generators. Added niobium reduced entry and superficial absorbed doses in periapical radiography by 9% to 40% with film and digital image receptors, decreased the radiation necessary to produce a given image density on E-speed film and reduced image contrast on D- and E-speed films. As shown by increased half-value layers for aluminum, titanium, and copper and by pulse-height analyses of beam spectra, niobium increased average beam energy by 6% to 19%. Despite the benefits of adding niobium on patient dose reduction and on narrowing the beams' energy spectra, the beam can be overhardened. Adding niobium, therefore, strikes the best balance between radiation dose reduction and beam attenuation, with its risks of increased exposure times, motion blur, and diminished image contrast, when it is used at modest thicknesses (30 μm) and at lower kVp (70) settings. © 1995 Mosby-Year Book, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Successful experiments in nonlinear vibrations have been carried out with cantilever beams under harmonic base excitation. A flexible slender cantilever has been chosen as a convenient structure to exhibit modal interactions, subharmonic, superharmonic and chaotic motions, and others interesting nonlinear phenomena. The tools employed to analyze the dynamics of the beam generally include frequency- and force-response curves. To produce force-response curves, one keeps the excitation frequency constant and slowly varies the excitation amplitude, on the other hand, to produce frequency-response curves, one keeps the excitation amplitude fixed and slowly varies the excitation frequency. However, keeping the excitation amplitude constant while varying the excitation frequency is a difficult task with an open-loop measurement system. In this paper, it is proposed a closed-loop monitor vibration system available with the electromagnetic shaker in order to keep the harmonic base excitation amplitude constant. This experimental setup constitutes a significant improvement to produce frequency-response curves and the advantages of this setup are evaluated in a case study. The beam is excited with a periodic base motion transverse to the axis of the beam near the third natural frequency. Modal interactions and two-period quasi-periodic motion are observed involving the first and the third modes. Frequency-response curves, phase space and Poincaré map are used to characterize the dynamics of the beam.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The glued-laminated lumber (glulam) technique is an efficient process for making rational use of wood. Fiber-Reinforced Polymers (FRPs) associated with glulam beams provide significant gains in terms of strength and stiffness, and also alter the mode of rupture of these structural elements. In this context, this paper presents a theoretical model for designing reinforced glulam beams. The model allows for the calculation of the bending moment, the hypothetical distribution of linear strains along the height of the beam, and considers the wood has a linear elastic fragile behavior in tension parallel to the fibers and bilinear in compression parallel to the fibers, initially elastic and subsequently inelastic, with a negative decline in the stress-strain diagram. The stiffness was calculated by the transformed section method. Twelve non-reinforced and fiberglass reinforced glulam beams were evaluated experimentally to validate the proposed theoretical model. The results obtained indicate good congruence between the experimental and theoretical values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Nailed Box Beam structural efficiency is directly dependent of the flange-web joint behavior, which determines the partial composition of the section, as the displacement between elements reduces the effective rigidity of the section and changes the stress distribution and the total displacement of the section. This work discusses the use of Nailed Plywood Box Beams in small span timber bridges, focusing on the reliability of the beam element. It is presented the results of tests carried out in 21 full scale Nailed Plywood Box Beams. The analysis of maximum load tests results shows that it presents a normal distribution, permitting the characteristic values calculation as the normal distribution theory specifies. The reliability of those elements was analyzed focusing on a timber bridge design, to estimate the failure probability in function of the load level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proton radiation therapy is a precise form of radiation therapy, but the avoidance of damage to critical normal tissues and the prevention of geographical tumor misses require accurate knowledge of the dose delivered to the patient and the verification of his position demand a precise imaging technique. In proton therapy facilities, the X-ray Computed Tomography (xCT) is the preferred technique for the planning treatment of patients. This situation has been changing nowadays with the development of proton accelerators for health care and the increase in the number of treated patients. In fact, protons could be more efficient than xCT for this task. One essential difficulty in pCT image reconstruction systems came from the scattering of the protons inside the target due to the numerous small-angle deflections by nuclear Coulomb fields. The purpose of this study is the comparison of an analytical formulation for the determination of beam lateral deflection, based on Molière's theory and Rutherford scattering with Monte Carlo calculations by SRIM 2008 and MCNPX codes. © 2010 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The CMS Level-1 trigger was used to select cosmic ray muons and LHC beam events during data-taking runs in 2008, and to estimate the level of detector noise. This paper describes the trigger components used, the algorithms that were executed, and the trigger synchronisation. Using data from extended cosmic ray runs, the muon, electron/photon, and jet triggers have been validated, and their performance evaluated. Efficiencies were found to be high, resolutions were found to be good, and rates as expected. © 2010 IOP Publishing Ltd and SISSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nonlinear spring element of a vibration isolator should ideally possess high static and low dynamic stiffness. A buckled beam may be a good candidate to fulfil this requirement provided its internal resonance frequencies are high enough to achieve a wide frequency range of isolation. If a straight beam is used, there is a singularity in the force-displacement characteristic. To smooth this characteristic and eliminate the singularity at the buckling point, beams with initial constant curvature along their length are investigated here as an alternative to the buckled straight beam. Their force displacement characteristics are compared with different initial curvature and with a straight buckled beam. The minimum achievable dynamic stiffness with its corresponding static stiffness is compared for different initial curvatures. A case study is considered where the beams are optimized to isolate a one kilogram mass and to achieve a natural frequency of 1 Hz, considering small amplitudes of vibration. Resonance frequencies of the optimized beams for different curvature are presented. It is shown that an order of magnitude reduction in stiffness compared with a linear spring is achievable, while the internal resonance frequencies of the curved beam are high enough to achieve an acceptable frequency range of isolation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a numerical approach to model the complex failure mechanisms that define the ultimate rotational capacity of reinforced concrete beams. The behavior in tension and compression is described by a constitutive damage model derived from a combination of two specific damage models [1]. The nonlinear behavior of the compressed region is treated by the compressive damage model based on the Drucker-Prager criterion written in terms of the effective stresses. The tensile damage model employs a failure criterion based on the strain energy associated with the positive part the effective stress tensor. This model is used to describe the behavior of very thin bands of strain localization, which are embedded in finite elements to represent multiple cracks that occur in the tensioned region [2]. The softening law establishes dissipation energy compatible with the fracture energy of the concrete. The reinforcing steel bars are modeled by truss elements with elastic-perfect plastic behavior. It is shown that the resulting approach is able to predict the different stages of the collapse mechanism of beams with distinct sizes and reinforcement ratios. The tensile damage model and the finite element embedded crack approach are able to describe the stiffness reduction due to concrete cracking in the tensile zone. The truss elements are able to reproduce the effects of steel yielding and, finally, the compressive damage model is able to describe the non-linear behavior of the compressive zone until the complete collapse of the beam due to crushing of concrete. The proposed approach is able to predict well the plastic rotation capacity of tested beams [3], including size-scale effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many new viscoelastic materials have been developed recently to help improve noise and vibration levels in mechanical structures for applications in automobile and aeronautical industry. The viscoelastic layer treatment applied to solid metal structures modifies two main properties which are related to the mass distribution and the damping mechanism. The other property controlling the dynamics of a mechanical system is the stiffness that does not change much with the viscoelastic material. The model of such system is usually complex, because the viscoelastic material can exhibit nonlinear behavior, in contrast with the many available tools for linear dynamics. In this work, the dynamic behavior of sandwich beam is modeled by finite element method using different element types which are then compared with experimental results developed in the laboratory for various beams with different viscoelastic layer materials. The finite element model is them updated to help understand the effects in the damping for various natural frequencies and the trade-off between attenuation and the mass add to the structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to investigate the influence of storage time (0, 48 hours) of Pinus elliottii pieces and the tests to obtaining modulus of elasticity (static bending and transversal vibration) in glued laminated timber beams, produced with resorcinol based adhesive and 0.8 MPa compaction pressure. After pieces were properly prepared, part of them was used in immediate three manufacturing glulam beams, tested after adhesive cure, and part stored for 48 hours under a roof with a temperature of 25°C and relative humidity of 60% for subsequent manufacturing and testing three other glulam beams. Results of analysis of variance (ANOVA) revealed that the storage period was significant influence in modulus of elasticity obtained in static bending test (8% reduction from 0 to 48 hours). This not occurred with modulus of elasticity obtained by transversal vibration test (no significant influence). ANOVA results showed equivalence of means in both test procedures. New researches ire needed to better understand the investigated phenomenon, using new wood species, other storage conditions and a great number of samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper is presented a multilayer perceptron neural network combined with the Nelder-Mead Simplex method to detect damage in multiple support beams. The input parameters are based on natural frequencies and modal flexibility. It was considered that only a number of modes were available and that only vertical degrees of freedom were measured. The reliability of the proposed methodology is assessed from the generation of random damages scenarios and the definition of three types of errors, which can be found during the damage identification process. Results show that the methodology can reliably determine the damage scenarios. However, its application to large beams may be limited by the high computational cost of training the neural network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical transition radiation (OTR) plays an important role in beam diagnostics for high energy particle accelerators. Its linear intensity with beam current is a great advantage as compared to fluorescent screens, which are subject to saturation. Moreover, the measurement of the angular distribution of the emitted radiation enables the determination of many beam parameters in a single observation point. However, few works deals with the application of OTR to monitor low energy beams. In this work we describe the design of an OTR based beam monitor used to measure the transverse beam charge distribution of the 1.9-MeV electron beam of the linac injector of the IFUSP microtron using a standard vision machine camera. The average beam current in pulsed operation mode is of the order of tens of nano-Amps. Low energy and low beam current make OTR observation difficult. To improve sensitivity, the beam incidence angle on the target was chosen to maximize the photon flux in the camera field-of-view. Measurements that assess OTR observation (linearity with beam current, polarization, and spectrum shape) are presented, as well as a typical 1.9-MeV electron beam charge distribution obtained from OTR. Some aspects of emittance measurement using this device are also discussed. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4748519]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Double-stranded pBS plasmid DNA was irradiated with gamma rays at doses ranging from 1 to 12 kGy and electron beams from 1 to 10 kGy. Fragment-size distributions were determined by direct visualization, using atomic force microscopy with nanometer-resolution operating in non-tapping mode, combined with an improved methodology. The fragment distributions from irradiation with gamma rays revealed discrete-like patterns at all doses, suggesting that these patterns are modulated by the base pair composition of the plasmid. Irradiation with electron beams, at very high dose rates, generated continuous distributions of highly shattered DNA fragments, similar to results at much lower dose rates found in the literature. Altogether, these results indicate that AFM could supplement traditional methods for high-resolution measurements of radiation damage to DNA, while providing new and relevant information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we have studied the radiation effects on MOSFET electronic devices. The integrated circuits were exposed to 10 key X-ray radiation and 2.6 MeV energy proton beam. We have irradiated MOSFET devices with two different geometries: rectangular-gate transistor and circular-gate transistor. We have observed the cumulative dose provokes shifts on the threshold voltage and increases or decreases the transistor's off-state and leakage current. The position of the trapped charges in modern CMOS technology devices depends on radiation type, dose rate, total dose, applied bias and is a function of device geometry. We concluded the circular-gate transistor is more tolerant to radiation than the rectangular-gate transistor. (C) 2011 Elsevier B.V. All rights reserved.