953 resultados para Metropolitan Water District of Southern California
Resumo:
The surface corrosion process associated with the hydrolysis of fluorozirconate glass, ZBLAN (53ZrF(4), 20BaF(2), 20NaF, 4LaF(2), 3AlF(3)) was investigated using X-ray photoelectron spectroscopy (XPS), grazing-incidence small angle X-ray scattering (GISAXS), X-ray reflectivity (XRR) and scanning electron microscopy (SEM). After a short exposure period (25 min) of the glass surface to deionized water the XPS data indicate an increase of the oxygen content accompanied by a decrease of fluorine concentration. The analysis of the chemical bonding structure identified the predominant surface reaction products as zirconium hydroxyfluoride and oxyfluoride species. The second most abundant glass component, bariumfluoride, remains almost unaffected by oxygen, while sodium fluoride is completely removed from the attacked surface region. The detected structural and compositional changes are related to the selective dissolution of the glass components leading to the formation of a new surface phase. This process is accompanied by a visible surface roughening caused by reprecipitated species, observed by SEM. The modification of the glass surface is responsible for an increase of the GISAXS intensity. The scattering was attributed to nanovoids formed at the surface region of the glass with an average size of 2.4 +/- 0.05 nm. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Experimental data on the precipitation chemistry in the semi-arid savanna of South Africa is presented in this paper. A total of 901 rainwater samples were collected with automatic wet-only samplers at a rural site, Louis Trichardt, and at an industrial site, Amersfoort, from July 1986 to June 1999. The chemical composition of precipitation was analysed for seven inorganic and two organic ions, using ion chromatography. The most abundant ion was SO(4)(2-) and a large proportion of the precipitation is acidic, with 98% of samples at Amersfoort and 94% at Louis Trichardt having a pH below 5.6 ( average pH of 4.4 and 4.9, respectively). This acidity results from a mixture of mineral and organic acids, with mineral acids being the primary contributors to the precipitation acidity in Amersfoort, while at Louis Trichardt, organic and mineral acids contribute equal amounts of acidity. It was found that the composition of rainwater is controlled by five sources: marine, terrigenous, nitrogenous, biomass burning and anthropogenic sources. The relative contributions of these sources at the two sites were calculated. Anthropogenic sources dominate at Amersfoort and biomass burning at Louis Trichardt. Most ions exhibit a seasonal pattern at Louis Trichardt, with the highest concentrations occurring during the austral spring as a result of agricultural activities and biomass combustion, while at Amersfoort it is less pronounced due to the dominance of relatively constant industrial emissions. The results are compared to observations from other African regions.
Resumo:
The surface corrosion process associated with the hydrolysis of fluorozirconate glass, Z-BLAN (53ZrF(4), 20BaF(2), 20NaF, 4LaF(2), 3AlF(3)), and the corrosion protection efficiency of a nanocrystalline transparent SnO2 layer were investigated by X-ray photoelectron spectroscopy. The tin oxide film was deposited by the sol-gel dip-coating process in the presence of Tiron(R) as particle surface modifier agent. The chemical bonding structure and composition of the surface region of coated and non-coated ZBLAN were studied before water contact and after different immersion periods (5-30 min). In contrast to the effects occurring for non-coated glass, where the surface undergoes a rapid selective dissolution of the most soluble species inducing the formation of a new surface phase consisting of stable zirconium oxyfluoride, barium fluoride and lanthanum fluoride species, the results for the SnO2-coated glass showed that the hydrolytic attack induces a filling of the film nanopores by dissolved glass material and the formation of tin oxylluoride and zirconium oxyfluoride species. This process results in a modified film, which acts as a hermetic diffusion barrier protecting efficiently the glass surface. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Actiaomycin-D (actD) binds to natural DNA at two different classes of binding sites, weak and strong. The affinity for these sites is highly dependent on DNA se(sequence and solution conditions, and the interaction appears to be purely entropic driven Although the entropic character of this reaction has been attributed to the release of water molecules upon drug to DNA complex formation, the mechanism by which hydration regulates actD binding and discrimination between different classes of binding sites on natural DNA is still unknown. In this work, we investigate the role of hydration on this reaction using the osmotic stress method. We skew that the decrease of solution water activity, due to the addition of sucrose, glycerol ethylene glycol, and betaine, favors drug binding to the strong binding sites on DNA by increasing both the apparent binding affinity Delta G, and the number of DNA base pairs apparently occupied by the bound drug n(bp/actD). These binding parameters vary linearly with the logarithm of the molar fraction of water in solution log(X-w), which indicates the contribution of water binding to the energetic of the reaction. It is demonstrated that the hydration change measured upon binding increases proportionally to the apparent size of the binding site n(bp/uctD). This indicates that n(bp/actD) measured from the Scatchard plod is a measure of the size of the DNA molecule changing conformation due to ligand binding. We also find that the contribution of DNA deformation, gauged by n(bp/act) to the total free energy of binding Delta G, is given by Delta G = Delta G(local) + n(bp/actD) x delta G(DNA), where Delta G(local), = -8020 +/- 51 cal/mol of actD bound and delta G(DNa) = -24.1 +/- 1.7cal/mol of base pair at 25 degrees C. We interpret Delta G(local), as the energetic contribution due to the direct interactions of actD with the actual tetranucleotide binding site, and it n(bp/actB) X delta G(DNA) as that due to change inconformation, induced by binding, of it n(bp/actD) DNA base pairs flanking the local site. This interpretation is supported by the agreement found between the value of delta G(DNA) and the torsional free energy change measured independently. We conclude suggesting an allosteric model for ligand binding to DNA, such that the increase in binding affinity is achieved by increasing the relaxation of the unfavorable free energy of binding storage at the local site through a larger number of DNA base pairs. The new aspect on this model is that the size of the complex is not fixed but determined by solutions conditions, such as water activity, which modulate the energetic barrier to change helix conformation. These results may suggest that long-range allosteric transitions of duplex DNA are involved in the inhibition of RNA synthesis by actD, and more generally, in the regulation of transcription. (C) 2000 John Wiley & Sons, Inc.
Resumo:
The quality and the power of human activities affect the external environment in different ways that can be measured and evaluated by means of several approaches and indicators. While the scientific community has been publishing several proposals for sustainable development indicators, there is still no consensus regarding the best approach to the use of these indicators and their reliability to measure sustainability. It is important, therefore, to question the effectiveness of sustainable development indicators in an effort to continue in the search for sustainability. This paper compares the results obtained with emergy accounting with five global Sustainability Metrics (SMs) proposed in the literature to verify if metrics are communicating coherent and similar information to guide decision makers towards sustainable development. Results obtained using emergy indices are discussed with the aid of emergy ternary diagrams. Metrics are confronted with emergy results, and the degree of variability among them is analyzed using a correlation matrix created for the Mercosur nations. The contrast of results clearly shows that metrics arrive at different interpretations about the sustainability of the nations studied, but also that some metrics may be grouped and used more prudently. Mercosur is presented as a case study to highlight and explain the discrepancies and similarities among Sustainability Metrics, and to expose the extent of emergy accounting. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The population dynamics and reproduction of the hermit crab Clibanarius vittatus were evaluated on Pescadores Beach, located on the estuarine channel of Sao Vicente (São Paulo), Brazil. The hermit crabs were captured by hand during low tide,from May 2001 to April 2003. A total of 2554 hermit crabs were captured, of which 701 were males, 1741 non-ovigerous females, 48 ovigerous females and 64 intersex individuals. The size-frequency distribution of the males was represented by a platykurtic bell-shaped curve, which differed from the leptokurtic bell-shaped curve of the females. The smaller and intermediate classes were composed mainly of females (modal size 6.5-7.5 mm carapace shield length (CSL)), and the larger classes only by males (modal size 9.5-10.5 mm CSL). The overall sex-ratio was skewed toward females (0.39:1/M:F), differing significantly from the expected 1:1. A seasonal reproductive pattern was recorded for C. vittatus in this location, with more intensive reproductive activity in the warmer months. The absence of juveniles suggests that their recruitment area is different than the area inhabited by adults, possibly another area with more protection and specialized or different resources for young.
Resumo:
Alpinia purpurata (Vieill) K. Schum, common name red ginger belongs to Zingiberaceae family, and is a perennial, with nice inflorescences composed of layers of bracts arranged in spirals. The utilization of keeping-quality solutions seeks to prolong vase-life and to maintain the quality of cut flowers. This research was performed to evaluate the effect of seven pulsing solutions (during 24 hours) on water relations, quality (turgor, browning and curvature) and the longevity of cut red ginger. The experiment followed complete randomized design, in factorial arrangement. The following treatments were studied: 1) distilled water (control), 2) sucrose 2% + 8-hidroxyquinoline citrate 200 ppm, 3) sucrose 2%, 4) sucrose 2% + citric acid, 5) benzyladenine 10 μM, 6) benzyladenine 10 μmol + sucrose 2%, 7) quaternary ammonia 0,5 mL/L. There was no significant (P>0.05) reduction of the relative water content (RWC) of the inflorescence bracts, among solutions, in the first period (7 days) and in the second period (14 days) and, between the two periods for all treatments. Significant differences among RWC of some treatments were recorded after 16 days of vase life. The utilization of benzyladenine, benzyladenine plus sucrose and sucrose plus citric acid, in the pulsing solution, allowed to keep the flowers quality for longer periods than the other treatments.
Resumo:
Simulations of overshooting, tropical deep convection using a Cloud Resolving Model with bulk microphysics are presented in order to examine the effect on the water content of the TTL (Tropical Tropopause Layer) and lower stratosphere. This case study is a subproject of the HIBISCUS (Impact of tropical convection on the upper troposphere and lower stratosphere at global scale) campaign, which took place in Bauru, Brazil (22° S, 49° W), from the end of January to early March 2004. Comparisons between 2-D and 3-D simulations suggest that the use of 3-D dynamics is vital in order to capture the mixing between the overshoot and the stratospheric air, which caused evaporation of ice and resulted in an overall moistening of the lower stratosphere. In contrast, a dehydrating effect was predicted by the 2-D simulation due to the extra time, allowed by the lack of mixing, for the ice transported to the region to precipitate out of the overshoot air. Three different strengths of convection are simulated in 3-D by applying successively lower heating rates (used to initiate the convection) in the boundary layer. Moistening is produced in all cases, indicating that convective vigour is not a factor in whether moistening or dehydration is produced by clouds that penetrate the tropopause, since the weakest case only just did so. An estimate of the moistening effect of these clouds on an air parcel traversing a convective region is made based on the domain mean simulated moistening and the frequency of convective events observed by the IPMet (Instituto de Pesquisas Meteorológicas, Universidade Estadual Paulista) radar (S-band type at 2.8 Ghz) to have the same 10 dBZ echo top height as those simulated. These suggest a fairly significant mean moistening of 0.26, 0.13 and 0.05 ppmv in the strongest, medium and weakest cases, respectively, for heights between 16 and 17 km. Since the cold point and WMO (World Meteorological Organization) tropopause in this region lies at ∼ 15.9 km, this is likely to represent direct stratospheric moistening. Much more moistening is predicted for the 15-16 km height range with increases of 0.85-2.8 ppmv predicted. However, it would be required that this air is lofted through the tropopause via the Brewer Dobson circulation in order for it to have a stratospheric effect. Whether this is likely is uncertain and, in addition, the dehydration of air as it passes through the cold trap and the number of times that trajectories sample convective regions needs to be taken into account to gauge the overall stratospheric effect. Nevertheless, the results suggest a potentially significant role for convection in determining the stratospheric water content. Sensitivity tests exploring the impact of increased aerosol numbers in the boundary layer suggest that a corresponding rise in cloud droplet numbers at cloud base would increase the number concentrations of the ice crystals transported to the TTL, which had the effect of reducing the fall speeds of the ice and causing a ∼13% rise in the mean vapour increase in both the 15-16 and 16-17 km height ranges, respectively, when compared to the control case. Increases in the total water were much larger, being 34% and 132% higher for the same height ranges, but it is unclear whether the extra ice will be able to evaporate before precipitating from the region. These results suggest a possible impact of natural and anthropogenic aerosols on how convective clouds affect stratospheric moisture levels.
Resumo:
The waters of Corumbataí River in the middle and eastern part of São Paulo State, Brazil, are extensively used for human consumption; their water quality has been modified mainly due to increasing pressure caused by population growth, accompanied by a more accentuated industrial development for the whole São Paulo State in the early 1970s. The Corumbataí River basin has, over time, received significant emissions of municipal waste products and discharges of wastewater, sludge, sewage, sanitary and industrial effluents, but the first effluent treatment plant at Rio Claro city was only inaugurated at the end of the 1990s. Data on river water quality from two widely spaced locations in the Corumbataí River basin are reported in this paper; they indicate the need for continuous initiatives and efforts by decision makers in order to improve and preserve the water quality in the basin for the 21st century. Copyright © 2007 IAHS Press.
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Resumo:
Appropriate management of agricultural crop residues could result in increases on soil organic carbon (SOC) and help to mitigate gas effect. To distinguish the contributions of SOC and sugarcane (Saccharum spp.) residues to the short-term CO2-C loss, we studied the infl uence of several tillage systems: heavy offset disk harrow (HO), chisel plow (CP), rotary tiller (RT), and sugarcane mill tiller (SM) in 2008, and CP, RT, SM, moldboard (MP), and subsoiler (SUB) in 2009, with and without sugarcane residues relative to no-till (NT) in the sugarcane producing region of Brazil. Soil CO2-C emissions were measured daily for two weeks after tillage using portable soil respiration systems. Daily CO2-C emissions declined after tillage regardless of tillage system. In 2008, total CO2-C from SOC and/or residue decomposition was greater for RT and lowest for CP. In 2009, emission was greatest for MP and CP with residues, and smallest for NT. SOC and residue contributed 47% and 41%, respectively, to total CO2-C emissions. Regarding the estimated emissions from sugarcane residue and SOC decomposition within the measurement period, CO2-C factor was similar to sugarcane residue and soil organic carbon decomposition, depending on the tillage system applied. Our approach may define new emission factors that are associated to tillage operations on bare or sugarcane-residue-covered soils to estimate the total carbon loss.
Resumo:
Incluye Bibliografía