836 resultados para Methodological standards
Resumo:
Overwhelming evidence shows the quality of reporting of randomised controlled trials (RCTs) is not optimal. Without transparent reporting, readers cannot judge the reliability and validity of trial findings nor extract information for systematic reviews. Recent methodological analyses indicate that inadequate reporting and design are associated with biased estimates of treatment effects. Such systematic error is seriously damaging to RCTs, which are considered the gold standard for evaluating interventions because of their ability to minimise or avoid bias. A group of scientists and editors developed the CONSORT (Consolidated Standards of Reporting Trials) statement to improve the quality of reporting of RCTs. It was first published in 1996 and updated in 2001. The statement consists of a checklist and flow diagram that authors can use for reporting an RCT. Many leading medical journals and major international editorial groups have endorsed the CONSORT statement. The statement facilitates critical appraisal and interpretation of RCTs. During the 2001 CONSORT revision, it became clear that explanation and elaboration of the principles underlying the CONSORT statement would help investigators and others to write or appraise trial reports. A CONSORT explanation and elaboration article was published in 2001 alongside the 2001 version of the CONSORT statement. After an expert meeting in January 2007, the CONSORT statement has been further revised and is published as the CONSORT 2010 Statement. This update improves the wording and clarity of the previous checklist and incorporates recommendations related to topics that have only recently received recognition, such as selective outcome reporting bias. This explanatory and elaboration document-intended to enhance the use, understanding, and dissemination of the CONSORT statement-has also been extensively revised. It presents the meaning and rationale for each new and updated checklist item providing examples of good reporting and, where possible, references to relevant empirical studies. Several examples of flow diagrams are included. The CONSORT 2010 Statement, this revised explanatory and elaboration document, and the associated website (www.consort-statement.org) should be helpful resources to improve reporting of randomised trials.
Resumo:
In this paper we describe the assessment and medical treatment of pain in children according to the concept of the Centre of Pediatrics and Adolescent Medicine at the university of Freiburg, Germany. Opiate therapy in children as well as novel data about the association of paracetamol (acetaminophen) and wheezing/asthma bronchiale in children are discussed. Special aspects of analgesia for painful procedures and a nitrous oxide/oxygen mixture which has been recently introduced in Germany are described. The second part of the paper presents results of our prospective study about continuous infusion of fentanyl and midazolam in a fixed combination in 19 critically ill patients with a median age of 46 months, 40% of these patients had an ARDS. The mortality rate was 21%. A median dose of fentanyl of 3.9 microg/kg/h (midazolam 0.26 mg/kg/h) was infused. The fentanyl serum level (median 4.2 ng/ml, range 1.7-17.8 ng/ml) correlated significantly with the administered dose while the midazolam serum levels (median 911 ng/ml, range 234-4 651 ng/ml) correlated neither with the administered dose nor with any of the analysed parameters. Conclusion: A standard protocol for the assessment and treatment of pain should be established in every pediatric hospital. The data about the association of asthma bronchiale and paracetamol cannot be interpreted conclusively, but show that even for well known substances clinical trials may lead to new awareness. The study data about continuous infusion of fentanyl and midazolam show a good correlation of the fentanyl application to serum levels, while midazolam appears to be not the optimal substance for continuous sedation in this setting.
Resumo:
SETTING: Correctional settings and remand prisons. OBJECTIVE: To critically discuss calculations for epidemiological indicators of the tuberculosis (TB) burden in prisons and to provide recommendations to improve study comparability. METHODS: A hypothetical data set illustrates issues in determining incidence and prevalence. The appropriate calculation of the incidence rate is presented and problems arising from cross-sectional surveys are clarifi ed. RESULTS: Cases recognized during the fi rst 3 months should be classifi ed as prevalent at entry and excluded from any incidence rate calculation. The numerator for the incidence rate includes persons detected as having developed TB during a specifi ed period of time subsequent to the initial 3 months. The denominator is persontime at risk from 3 months onward to the end point (TB or end of the observation period). Preferably, entry time, exit time and event time are known for each inmate to determine person-time at risk. Failing that, an approximation consists of the sum of monthly head counts, excluding prevalent cases and those persons no longer at risk from both the numerator and the denominator. CONCLUSIONS: The varying durations of inmate incarceration in prisons pose challenges for quantifying the magnitude of the TB problem in the inmate population. Recommendations are made to measure incidence and prevalence.