993 resultados para Mechanics, Applied.
Resumo:
Flow around moving boundary is ubiquitous in engineering applications. To increse the efficienly of the algorithm to handle moving boundaries is still a major challenge in Computational Fluid Dynamics (CFD). The Chimera grid method is one type of method to handle moving boundaries. A concept of domain de-composition has been proposed in this paper. In this method, sub-domains are meshed independently and governing equations are also solved separately on them. The Chimera grid method was originally used only on structured (curvilinear) meshes. However, in a problem which involves both moving boundary and complex geometry, the number of sub-domains required in a traditional (structured) Chimera method becomes fairly large. Thus the time required in the interior boundary locating, link-building and data exchanging also increases. The use of unstructured Chimera grid can reduce the time consumption significantly by the reduction of domain(block) number. Generally speaking, unstructured Chimera grid method has not been developed. In this paper, a well-known pressure correction scheme - SIMPLEC is modified and implemented on unstructured Chimera mesh. A new interpolation scheme regarding the pressure correction is proposed to prevent the possible decoupling of pressure. A moving-mesh finite volume approach is implemented in an inertial reference frame. This approach is then used to compute incompressible flow around a rotating circular and elliptic cylinder. These numerical examples demonstrate the capability of the proposed scheme in handling moving boundaries. The numerical results are in good agreement with other experimental and computational data in literature. The method proposed in this paper can be efficiently applied to more challenge cases such as free-falling objects or heavy particles in fluid.
Resumo:
Due to the recent implantation of the Bologna process, the definition of competences in Higher Education is an important matter that deserves special attention and requires a detailed analysis. For that reason, we study the importance given to severa! competences for the professional activity and the degree to which these competences have been achieved through the received education. The answers include also competences observed in two periods of time given by individuals of multiple characteristics. In this context and in order to obtain synthesized results, we propose the use of Multiple Table Factor Analysis. Through this analysis, individuals are described by severa! groups, showing the most important variability factors of the individuals and allowing the analysis of the common structure ofthe different data tables. The obtained results will allow us finding out the existence or absence of a common structure in the answers of the various data tables, knowing which competences have similar answer structure in the groups of variables, as well as characterizing those answers through the individuals.
Resumo:
Seasonal surveys were conducted during 1998–1999 in Baja California, Baja California Sur, Sonora, and Sinaloa to determine the extent and activities of artisanal elasmobranch fisheries in the Gulf of California. One hundred and forty–seven fishing sites, or camps, were documented, the majority of which (n = 83) were located in Baja California Sur. Among camps with adequate fisheries information, the great majority (85.7%) targeted elasmobranchs during some part of the year. Most small, demersal sharks and rays were landed in mixed species fisheries that also targeted demersal teleosts, but large sharks were usually targeted in directed drift gillnet or, to a lesser extent, surface longline fisheries. Artisanal fishermen were highly opportunistic, and temporally switched targets depending on the local productivity of teleost, invertebrate, and elasmobranch fishery resources. Major fisheries for small sharks (< 1.5 m, “cazón”) were documented in Baja California during spring, in Sonora during autumn–spring, and in Sinaloa during winter and spring. Triakid sharks (Mustelus spp.) dominated cazón landings in the northern states, whereas juvenile scalloped hammerheads (Sphyrna lewini) primarily supported the fishery in Sinaloa. Large sharks (> 1.5 m, “tiburón”) were minor components of artisanal elasmobranch fisheries in Sonora and Sinaloa, but were commonly targeted during summer and early autumn in Baja California and Baja California Sur. The pelagic thresher shark (Alopias pelagicus) and silky shark (Carcharhinus falciformis) were most commonly landed in Baja California, whereas a diverse assemblage of pelagic and large coastal sharks was noted among Baja California Sur landings. Rays dominated summer landings in Baja California and Sinaloa, when elevated catch rates of the shovelnose guitarfish (Rhinobatos productus, 13.2 individuals/vessel/trip) and golden cownose ray (Rhinoptera steindachneri, 11.1 individuals/vesse/trip) primarily supported the respective fisheries. The Sonoran artisanal elasmobranch fishery was the most expansive recorded during this study, and rays (especially R. productus) dominated spring and summer landings in this state. Seasonal catch rates of small demersal sharks and rays were considerably greater in Sonora than in other surveyed states. Many tiburón populations (e.g., C. leucas, C. limbatus, C. obscurus, Galeocerdo cuvier) have likely been overfished, possibly shifting effort towards coastal populations of cazón and rays. Management recommendations, including conducting demographic analyses using available life history data, determining and protecting nursery areas, and enacting seasonal closures in areas of elasmobranch aggregation (e.g., reproduction, feeding), are proposed. Without effective, enforceable management to sustain or rebuild targeted elasmobranch populations in the Gulf of California, collapse of many fisheries is a likely outcome. (PDF contains 243 pages)
Resumo:
The microgravity research, as a branch of the advanced sciences and a spe- cialized field of high technology, has been made in China since the late 1980's. The research group investigating microgravity fluid physics consisted of our col- leagues and the authors in the Institute of Mechanics of the Chinese Academy of Sciences (CAS), and we pay special attention to the floating zone convection as our first research priority. Now, the research group has expanded and is a part of the National Microgravity Laboratory of the CAS, and the research fields have been extended to include more subjects related to microgravity science. Howev- er, the floating zone convection is still an important topic that greatly holds our research interests.
目录
1.1 floating-zone crystal growth
1.2 physical model
1.3 hydrodynamic model
1.4 mathematical model
references
2. basic features of floating zone convection
2.1 equations and boundary conditions
2.2 simple solutions of fz convection
2.3 solution for two-layers flow
2.4 numerical simulation
2.5 onset of oscillation
references
3. experimental method of fz convection
3.1 ground-based simulation experiments for pr≥1
3.2 temperature and velocity oscillations
3.3 optical diagnostics of free surface oscillation
3.4 critical parameters
3.5 microgravity experiments
3.6 ground-based simulation experiment for pr《1
4. mechanism on the onset of oscillatory convection
4.1 order of magnitude analysis
4.2 mechanism of hydrothermal instability
4.3 linear stability analysis
4.4 energy instability of thermocapillary convection
4.5 unsteady numerical simulation of 2d and 3d
4.6 two bifurcation transitions in the case of small pr number fluid
4.7 two bifurcation transitions in the case of large pr number fluid
4.8 transition to turbulence
references
5. liquid bridge volume as a critical geometrical parameter
5.1 critical geometrical parameters
5.2 ground-based and mierogravity experiments
5.3 instability analyses of a large prandtl number (pr≥1)fluid
5.4 instability analyses of a small prandtl number (pr《1)fluid
5.5 numerical simulation on two bifurcation process
references
6. theoretical model of crystal growth by the floating zone method
6.1 concentration distribution in a pure diffusion process
6.2 solutal capillary convection and diffusion
6.3 coupling with phase change convection
6.4 engineering model of floating zone technique
references
7. influence of applied magnetic field on the fz convection
7.1 striation due to the time-dependent convection
7.2 applied steady magnetic field and rotational magnetic field
7.3 magnetic field design for floating half zone
7.4 influence of magnetic field on segregation
references
8. influence of residual acceleration and g-jitter
8.1 residual acceleration in microgravity experiments
8.2 order of magnitude analyses (oma)
8.3 rayleigh instability due to residual acceleration
8.4 ground-based experiment affected by a vibration field
8.5 numerical simulation of a low frequency g-jitter
8.6 numerical simulation of a high frequency g-jitter
references
Resumo:
Table of Contents
1 | Introduction | 1 |
1.1 | What is an Adiabatic Shear Band? | 1 |
1.2 | The Importance of Adiabatic Shear Bands | 6 |
1.3 | Where Adiabatic Shear Bands Occur | 10 |
1.4 | Historical Aspects of Shear Bands | 11 |
1.5 | Adiabatic Shear Bands and Fracture Maps | 14 |
1.6 | Scope of the Book | 20 |
2 | Characteristic Aspects of Adiabatic Shear Bands | 24 |
2.1 | General Features | 24 |
2.2 | Deformed Bands | 27 |
2.3 | Transformed Bands | 28 |
2.4 | Variables Relevant to Adiabatic Shear Banding | 35 |
2.5 | Adiabatic Shear Bands in Non-Metals | 44 |
3 | Fracture and Damage Related to Adiabatic Shear Bands | 54 |
3.1 | Adiabatic Shear Band Induced Fracture | 54 |
3.2 | Microscopic Damage in Adiabatic Shear Bands | 57 |
3.3 | Metallurgical Implications | 69 |
3.4 | Effects of Stress State | 73 |
4 | Testing Methods | 76 |
4.1 | General Requirements and Remarks | 76 |
4.2 | Dynamic Torsion Tests | 80 |
4.3 | Dynamic Compression Tests | 91 |
4.4 | Contained Cylinder Tests | 95 |
4.5 | Transient Measurements | 98 |
5 | Constitutive Equations | 104 |
5.1 | Effect of Strain Rate on Stress-Strain Behaviour | 104 |
5.2 | Strain-Rate History Effects | 110 |
5.3 | Effect of Temperature on Stress-Strain Behaviour | 114 |
5.4 | Constitutive Equations for Non-Metals | 124 |
6 | Occurrence of Adiabatic Shear Bands | 125 |
6.1 | Empirical Criteria | 125 |
6.2 | One-Dimensional Equations and Linear Instability Analysis | 134 |
6.3 | Localization Analysis | 140 |
6.4 | Experimental Verification | 146 |
7 | Formation and Evolution of Shear Bands | 155 |
7.1 | Post-Instability Phenomena | 156 |
7.2 | Scaling and Approximations | 162 |
7.3 | Wave Trapping and Viscous Dissipation | 167 |
7.4 | The Intermediate Stage and the Formation of Adiabatic Shear Bands | 171 |
7.5 | Late Stage Behaviour and Post-Mortem Morphology | 179 |
7.6 | Adiabatic Shear Bands in Multi-Dimensional Stress States | 187 |
8 | Numerical Studies of Adiabatic Shear Bands | 194 |
8.1 | Objects, Problems and Techniques Involved in Numerical Simulations | 194 |
8.2 | One-Dimensional Simulation of Adiabatic Shear Banding | 199 |
8.3 | Simulation with Adaptive Finite Element Methods | 213 |
8.4 | Adiabatic Shear Bands in the Plane Strain Stress State | 218 |
9 | Selected Topics in Impact Dynamics | 229 |
9.1 | Planar Impact | 230 |
9.2 | Fragmentation | 237 |
9.3 | Penetration | 244 |
9.4 | Erosion | 255 |
9.5 | Ignition of Explosives | 261 |
9.6 | Explosive Welding | 268 |
10 | Selected Topics in Metalworking | 273 |
10.1 | Classification of Processes | 273 |
10.2 | Upsetting | 276 |
10.3 | Metalcutting | 286 |
10.4 | Blanking | 293 |
Appendices | 297 | |
A | Quick Reference | 298 |
B | Specific Heat and Thermal Conductivity | 301 |
C | Thermal Softening and Related Temperature Dependence | 312 |
D | Materials Showing Adiabatic Shear Bands | 335 |
E | Specification of Selected Materials Showing Adiabatic Shear Bands | 341 |
F | Conversion Factors | 357 |
References | 358 | |
Author Index | 369 | |
Subject Index | 375 |
Resumo:
ENGLISH: The rate of growth of tropical tunas has been studied by various investigators using diverse methods. Hayashi (1957) examined methods to determine the age of tunas by interpreting growth patterns on the bony or hard parts, but the results proved unreliable. Moore (1951), Hennemuth (1961), and Davidoff (1963) studied the age and growth of yellowfin tuna by the analysis of size frequency distributions. Schaefer, Chatwin and Broadhead (1961), and Fink (ms.), estimated the rate of growth of yellowfin tuna from tagging data; their estimates gave a somewhat slower rate of growth than that obtained by the study of length-frequency distributions. For the yellowfin tuna, modal groups representing age groups can be identified and followed for relatively long periods of time in length-frequency graphs. This may not be possible, however, for other tropical tunas where the modal groups may not represent identifiable age groups; this appears to be the case for skipjack tuna (Schaefer, 1962). It is necessary, therefore, to devise a method of estimating the growth rates of such species without identifying the year classes. The technique described in this study, hereafter called the "increment technique", employs the measurement of the change in length per unit of time, with respect to mean body length, without the identification of year classes. This technique is applied here as a method of estimating the growth rate of yellowfin tuna from the entire Eastern Tropical Pacific, and from the Commission's northern statistical areas (Areas 01-04 and 08) as shown in Figure 1. The growth rates of yellowfin tuna from Area 02 (Hennemuth, 1961) and from the northern areas (Davidoff, 1963) have been described by the technique of tracing modal progressions of year classes, hereafter termed the "year class technique". The growth rate analyses performed by both techniques apply to the segment of the population which is captured by tuna fishing vessels. The results obtained by both methods are compared in this report. SPANISH: La tasa del crecimiento de los atunes tropicales ha sido estudiada por varios investigadores quienes usaron diversos métodos. Hayashi (1957) examinó los métodos para determinar la edad de los atunes interpretando las marcas del crecimiento de las partes óseas o duras, pero los resultados no han demostrado eficacia. Moore (1951), Hennemuth (1961) y Davidoff (1963) estudiaron la edad y el crecimiento del atún aleta amarilla por medio del análisis de las distribuciones de la frecuencia de tamaños. Schaefer, Chatwin y Broadhead (1961) y Fink (Ms.), estimaron la tasa del crecimiento del atún aleta amarilla valiéndose de los datos de la marcación de los peces; ambos estimaron una tasa del crecimiento algo más lenta que la que se obtiene mediante el estudio de las distribuciones de la frecuencia de longitudes. Para el atún aleta amarilla, los grupos modales que representan grupos de edad pueden ser identificados y seguidos durante períodos de tiempo relativamente largos en los gráficos de la frecuencia de longitudes. Sin embargo, ésto puede no ser posible para otros atunes tropicales para los cuales los grupos modales posiblemente no representan grupos de edad identificables; este parece ser el caso para el barrilete (Schaefer, 1962). Consecuentemente, es necesario idear un método para estimar las tasas del crecimiento de las mencionadas especies sin necesidad de identificar las clases anuales. La técnica descrita en este estudio, en adelante llamada la "técnica incremental", emplea la medida del cambio en la longitud por unidad de tiempo, con respecto al promedio de la longitud corporal, sin tener que identificar las clases anuales. Esta técnica se aplica aquí como un método para estimar la tasa del crecimiento del atún aleta amarilla de todo el Pacífico Oriental Tropical, y de las áreas estadísticas norteñas de la Comisión (Areas 01-04 y 08), como se muestra en la Figura 1. Las tasas del crecimiento del atún aleta amarilla del Area 02 (Hennemuth, 1961) y de las áreas del norte (Davidoff, 1963), han sido descritas por medio de una técnica que consiste en delinear las progresiones modales de las clases anuales, en adelante llamada la "técnica de la clase anual". Los análisis de la tasa del crecimiento llevados a cabo por ambas técnicas se refieren al segmento de la población capturada por embarcaciones pesqueras de atún. Los resultados obtenidos por ambos métodos se comparan en este informe.
Resumo:
We consider adhesive contact between a rigid sphere of radius R and a graded elastic half-space with Young's modulus varying with depth according to a power law E = E-0(z/c(0))(k) (0 < k < 1) while Poisson's ratio v remaining a constant. Closed-form analytical solutions are established for the critical force, the critical radius of contact area and the critical interfacial stress at pull-off. We highlight that the pull-off force has a simple solution of P-cr= -(k+3)pi R Delta gamma/2 where Delta gamma is the work of adhesion and make further discussions with respect to three interesting limits: the classical JKR solution when k = 0, the Gibson solid when k --> 1 and v = 0.5, and the strength limit in which the interfacial stress reaches the theoretical strength of adhesion at pull-off. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
As a basic tool of modern biology, sequence alignment can provide us useful information in fold, function, and active site of protein. For many cases, the increased quality of sequence alignment means a better performance. The motivation of present work is to increase ability of the existing scoring scheme/algorithm by considering residue–residue correlations better. Based on a coarse-grained approach, the hydrophobic force between each pair of residues is written out from protein sequence. It results in the construction of an intramolecular hydrophobic force network that describes the whole residue–residue interactions of each protein molecule, and characterizes protein's biological properties in the hydrophobic aspect. A former work has suggested that such network can characterize the top weighted feature regarding hydrophobicity. Moreover, for each homologous protein of a family, the corresponding network shares some common and representative family characters that eventually govern the conservation of biological properties during protein evolution. In present work, we score such family representative characters of a protein by the deviation of its intramolecular hydrophobic force network from that of background. Such score can assist the existing scoring schemes/algorithms, and boost up the ability of multiple sequences alignment, e.g. achieving a prominent increase (50%) in searching the structurally alike residue segments at a low identity level. As the theoretical basis is different, the present scheme can assist most existing algorithms, and improve their efficiency remarkably.
Resumo:
To simulate fracture behaviors in concrete more realistically, a theoretical analysis on the potential question in the quasi-static method is presented, then a novel algorithm is proposed which takes into account the inertia effect due to unstable crack propagation and meanwhile requests much lower computational efforts than purely dynamic method. The inertia effect due to load increasing becomes less important and can be ignored with the loading rate decreasing, but the inertia effect due to unstable crack propagation remains considerable no matter how low the loading rate is. Therefore, results may become questionable if a fracture process including unstable cracking is simulated by the quasi-static procedure excluding completely inertia effects. However, it requires much higher computational effort to simulate experiments with not very high loading rates by the dynamic method. In this investigation which can be taken as a natural continuation, the potential question of quasi-static method is analyzed based on the dynamic equations of motion. One solution to this question is the new algorithm mentioned above. Numerical examples are provided by the generalized beam (GB) lattice model to show both fracture processes under different loading rates and capability of the new algorithm.