971 resultados para Material preparation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-dimensional model has been developed based on the experimental results of stainless steel remelting with the laminar plasma technology to investigate the transient thermo-physical characteristics of the melt pool liquids. The influence of the temperature field, temperature gradient, solidification rate and cooling rate on the processing conditions has been investigated numerically. Not only have the appropriate processing conditions been determined according to the calculations, but also they have been predicted with a criterion established based on the concept of equivalent temperature area density (ETAD) that is actually a function of the processing parameters and material properties. The comparison between the resulting conditions shows that the ETAD method can better predict the optimum condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

首次在涂敷PEI的玻璃表面上制备了癸酸及全氟癸酸的单分子层膜。研究了成膜机理及摩擦特性。结果表明。脱水剂DCCD促进了癸酸或全氟癸酸与PEI酞胺化的反应。导致两种羧酸在PEI表面产生了靠化学键(酞胺键)连接的稳定的单分子层膜,摩擦、磨损实验表明。单分子层有机膜的摩擦特性受膜的组成、表面能及有序性和堆积密度的重要影响。表面能越低,有序性和堆积密度越高。摩擦系数越低。与碳氢化合物相比。碳氟化合物形成的有序膜具有更高的强度和抗磨性能。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a good alternative method to improve the tribological properties of polymer films by chemisorbing a long-chain monolayer on the functional polymer surface. Thus, a novel self-assembled monolayer is successfully prepared on a silicon substrate coated with amino-group-containing polyethyleneimine (PEI) by the chemical adsorption of stearic acid (STA) molecules. The formation and structure of the STA-PEI film are characterized by means of contact-angle measurement and ellipsometric thickness measurement, and of Fourier transformation infrared spectrometric and atomic force microscopic analyses. The micro- and macro-tribological properties of the STA-PEI film are investigated on an atomic force microscope (AFM) and a unidirectional tribometer, respectively. It has been found that the STA monolayer about 2.1-nm thick is produced on the PEI coating by the chemical reaction between the amino groups in the PEI and the carboxyl group in the STA molecules to form a covalent amide bond in the presence of N,N'-dicyclohexylcarbodiimide (DCCD) as a dehydrating regent. By introducing the STA monolayer, the hydrophilic PEI polymer surface becomes hydrophobic with a water contact angle to be about 105degrees. Study of the time dependence of the film formation shows that the adsorption of PEI is fast, whereas at least 24 h is needed to generate the saturated STA monolayer. Whereas the PEI coating has relatively high adhesion, friction, and poor anti-wear ability, the STA-PEI film possesses good adhesive resistance and high load-carrying capacity and anti-wear ability, which could be attributed to the chemical structure of the STA-PEI thin film. It is assumed that the hydrogen bonds between the molecules of the STA-PEI film act to stabilize the film and can be restored after breaking during sliding. Thus, the self-assembled STA-PEI thin film might find promising application in the lubrication of micro-electromechanical systems (MEMS).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cowper-Symonds and Johnson-Cook dynamic constitutive relations are used to study the influence of both strain rate effect and temperature variation on the material intrinsic length scale in strain gradient plasticity. The material intrinsic length scale decreases with increasing strain rates, and this length scale increases with temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling study is performed concerning the heat transfer and fluid flow for a laminar argon plasma jet impinging normally upon a flat workpiece exposed to the ambient air. The diffusion of the air into the plasma jet is handled by using the combined-diffusion-coefficient approach. The heat flux density and jet shear stress distributions at the workpiece surface obtained from the plasma jet modeling are then used to study the re-melting process of a carbon steel workpiece. Besides the heat conduction within the workpiece, the effects of the plasma-jet inlet parameters (temperature and velocity), workpiece moving speed, Marangoni convection, natural convection etc. on the re-melting process are considered. The modeling results demonstrate that the shapes and sizes of the molten pool in the workpiece are influenced appreciably by the plasma-jet inlet parameters, workpiece moving speed and Marangoni convection. The jet shear stress manifests its effect at higher plasma-jet inlet velocities, while the natural convection effect can be ignored. The modeling results of the molten pool sizes agree reasonably with available experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to study the failure of disordered materials, the ensemble evolution of a nonlinear chain model was examined by using a stochastic slice sampling method. The following results were obtained. (1) Sample-specific behavior, i.e. evolutions are different from sample to sample in some cases under the same macroscopic conditions, is observed for various load-sharing rules except in the globally mean field theory. The evolution according to the cluster load-sharing rule, which reflects the interaction between broken clusters, cannot be predicted by a simple criterion from the initial damage pattern and even then is most complicated. (2) A binary failure probability, its transitional region, where globally stable (GS) modes and evolution-induced catastrophic (EIC) modes coexist, and the corresponding scaling laws are fundamental to the failure. There is a sensitive zone in the vicinity of the boundary between the GS and EIC regions in phase space, where a slight stochastic increment in damage can trigger a radical transition from GS to EIC. (3) The distribution of strength is obtained from the binary failure probability. This, like sample-specificity, originates from a trans-scale sensitivity linking meso-scopic and macroscopic phenomena. (4) Strong fluctuations in stress distribution different from that of GS modes may be assumed as a precursor of evolution-induced catastrophe (EIC).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, discussions are focused on the growth of a nucleated void in a viscoelastic material. The in situ tensile tests of specimens made of high-density polyethylene, filled with spherical glass beads (HDPE/GB) are carried out under SEM. The experimental result indicates that the microvoid nucleation is induced by the partially interfacial debonding of particles. By means of the Laplace transform and the Eshelby's equivalent inclusion method, a new analytical expression of the void strain at different nucleation times is derived. It can be seen that the strain of the nucleated void depends not only on the remote strain history, but also on the nucleation time. This expression is also illustrated by numerical examples, and is found to be of great usefulness in the study of damage evolution in viscoelastic materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic response of a finite crack in an unbounded Functionally Graded Material (FGM) subjected to an antiplane shear loading is studied in this paper. The variation of the shear modulus of the functionally graded material is modeled by a quadratic increase along the direction perpendicular to the crack surface. The dynamic stress intensity factor is extracted from the asymptotic expansion of the stresses around the crack tip in the Laplace transform plane and obtained in the time domain by a numerical Laplace inversion technique. The influence of graded material property on the dynamic intensity factor is investigated. It is observed that the magnitude of dynamic stress intensity factor for a finite crack in such a functionally graded material is less than in the homogeneous material with a property identical to that of the FGM crack plane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a parameter extraction algorithm based on a theoretical transfer function, which takes into account a converging THz beam. Using this, we successfully extract material parameters from data obtained for a quartz sample with a THz time domain spectrometer. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diamond-like carbon (DLC) coatings were deposited on to silicon, glass and metal substrates, using an rf-plasma enhanced chemical vapour deposition (rf-PECVD) process. The resultant film properties were evaluated in respect of material and interfacial property control, based on bias voltage variation and the introduction of inert (He and Ar) and reactive (N2) diluting gases in a CH4 plasma. The analysis techniques used to assess the material properties of the films included AFM, EELS, RBS/ERDA, spectroscopic, electrical, stress, microhardness, and adhesion. These were correlated to the tribological performance of the coatings using wear measurements. The most important observation is that He dilution (>90%) promotes enhanced adhesion with respect to all substrate material studies. Coatings typically exhibit a microhardness of the order of 10-20 GPa in films 0.1material and interfacial property control, based on bias voltage variation and the introduction of inert (He and Ar) and reactive (N2) diluting gases in a CH4 plasma. The analysis techniques used to assess the material properties of the films included AFM, EELS, RBS/ERDA, spectroscopic, electrical, stress, microhardness, and adhesion. These were correlated to the tribological performance of the coatings using wear measurements. The most important observation is that He dilution (>90%) promotes enhanced adhesion with respect to all substrate materials studied. Coatings typically exhibit a microhardness of the order of 10-20 GPa in films 0.1 < d < 2 μm thick, with associated electrical resistivity in the range 108 < ρ < 1012 Ω·cm, coefficient of friction <0.1 and surface RMS roughness as low as 2 A. The results are discussed with respect to surface pre-treatment, ion surface bombardment, interfacial reactivity and changes in plasma gas breakdown processes.