968 resultados para Magnetic materials
Resumo:
Synthesis and characterization of electrical and magnetic properties of ilmenite phases of the type MnTi1-xNbxO3 have been carried out. Single phase materials could be obtained for 0.0 less than or equal to x less than or equal to 0.25. The electrical conductivity increases with increasing Nb content. Magnetic susceptibility studies show that the phases exhibit 2D antiferromagnetic behavior. The magnetic susceptibility data has been analyzed using Fisher's specific heat to determine the long range ordering temperature, (C) 1998 Academic Press.
Resumo:
Several doped 6H hexagonal ruthenates, having the general formula Ba3MRu2O9, have been studied over a significant period of time to understand the unusual magnetism of ruthenium metal. However, among them, the M = Fe compound appears different since it is observed that unlike others, the 3d Fe ions and 4d Ru ions can easily exchange their crystallographic positions, and as a result many possible magnetic interactions become realizable. The present study involving several experimental methods on this compound establishes that the magnetic structure of Ba3FeRu2O9 is indeed very different from all other 6H ruthenates. Local structural study reveals that the possible Fe/Ru site disorder further extends to create local chemical inhomogeneity, affecting the high-temperature magnetism of this material. There is a gradual decrease of Fe-57 Mossbauer spectral intensity with decreasing temperature (below 100 K), which reveals that there is a large spread in the magnetic ordering temperatures, corresponding to many spatially inhomogeneous regions. However, finally at about 25 K, the whole compound is found to take up a global glasslike magnetic ordering.
Resumo:
We report the tuning of oxygen content of La0.5Ca0.5MnO3-y and its effect on electrical transport and magnetic properties. A small reduction of oxygen content leads to a decrease in sample resistivity, which is more dramatic at low temperatures. No significant change is seen to occur in the magnetic properties for this case. Further reduction in the oxygen content increases the resistivity remarkably, as compared to the as-prepared sample. The amplitude of the ferromagnetic (FM) transition at 225 K decreases, and the antiferromagnetic (AFM) transition at 130 K disappears. For samples with y=0.17, insulator-metal transition and paramagnetic-ferromagnetic transition occur around 167 K. The results are explained in terms of the effect of oxygen vacancies on the coexistence of the metallic FM phase and the insulating charge ordered AFM phase.
Resumo:
We report an extended x-ray absorption fine-structure investigation on the Mn K absorption edge in La1-xCaxMnO3 as a function of temperature and magnetic field. The results provide microscopic evidence that the modifications in the local structure around Mn atomic sites, as a function of temperature and applied magnetic field, are directly related to the magneto-transport properties of these materials.
Resumo:
A method for the preparation of acicular hydrogoethite (alpha -FeOOH.xH(2)O, 0.1 < x < 0.22) particles of 0.3-1 mm length has been optimized by air oxidation of Fe( II) hydroxide gel precipitated from aqueous (NH4)(2)Fe(SO4)(2) solutions containing 0.005-0.02 atom% of cationic Pt, Pd or Rh additives as morphology controlling agents. Hydrogoethite particles are evolved from the amorphous ferrous hydroxide gel by heterogeneous nucleation and growth. Preferential adsorption of additives on certain crystallographic planes thereby retarding the growth in the perpendicular direction, allows the particles to acquire acicular shapes with high aspect ratios of 8-15. Synthetic hydrogoethite showed a mass loss of about 14% at similar to 280 degreesC, revealing the presence of strongly coordinated water of hydration in the interior of the goethite crystallites. As evident from IR spectra, excess H2O molecules (0.1- 0.22 per formula unit) are located in the strands of channels formed in between the double ribbons of FeO6 octahedra running parallel to the c- axis. Hydrogoethite particles constituted of multicrystallites are formed with Pt as additive, whereas single crystallite particles are obtained with Pd (or Rh). For both dehydroxylation as well as H-2 reduction, a lower reaction temperature (similar to 220 degreesC) was observed for the former (Pt treated) compared to the latter (Pd or Rh) (similar to 260 degreesC). Acicular magnetite (Fe3O4) was prepared either by reducing hydrogoethite (magnetite route) or dehydroxylating hydrogoethite to hematite and then reducing it to magnetite (hematite- magnetite route). According to TEM studies, preferential dehydroxylation of hydrogoethite along < 010 > leads to microporous hematite. Maghemite (gamma -Fe2O3 (-) (delta), 0 <
Resumo:
A systematic study on the variation of Mössbauer hyperfine parameters with grain size in nanocrystalline zinc ferrite is lacking. In the present study, nanocrystalline ZnFe2O4 ferrites with different grain sizes were prepared by ball-milling technique and characterised by X-ray, EDAX, magnetisation and Mössbauer studies. The grain size decreases with increasing milling time and lattice parameter is found to be slightly higher than the bulk value. Magnetisation at room temperature (RT) and at 77 K could not be saturated with a magnetic field of 7 kOe and the observed magnetisation at these temperatures can be explained on the basis of deviation of cation distribution from normal spinel structure. The Mössbauer spectra were recorded at different temperatures between RT and 16 K. The values of quadrupole splitting at RT are higher for the milled samples indicating the disordering of ZnFe2O4 on milling. The strength of the magnetic hyperfine interactions increases with grain size reduction and this can be explained on the basis of the distribution of Fe3+ ions at both tetrahedral and octahedral sites.
Resumo:
Hexagonal Dy(0.5)Y(0.5)MnO(3), a multiferroic rare-earth manganite with geometrically frustrated antiferromagnetism, has been investigated with single-crystal neutron diffraction measurements. Below 3.4 K magnetic order is observed on both the Mn (antiferromagnetic) and Dy (ferrimagnetic) sublattices that is identical to that of undiluted hexagonal DyMnO(3) at low temperature. The Mn moments undergo a spin reorientation transition between 3.4 K and 10 K, with antiferromagnetic order of the Mn sublattice persisting up to 70 K; the antiferromagnetic order in this phase is distinct from that observed in undiluted (h) DyMnO(3), yielding a qualitatively new phase diagram not seen in other hexagonal rare-earth manganites. A magnetic field applied parallel to the crystallographic c axis will drive a transition from the antiferromagnetic phase into the low-temperature ferrimagnetic phase with little hysteresis.
Resumo:
Synthesis and structure of new (Bi, La)(3)MSb(2)O(11) phases (M = Cr, Mn, Fe) are reported in conjunction with their magnetic and photocatalytic properties. XRD refinements reflect that Bi(3)CrSb(2)O(11), Bi(2)LaCrSb(2)O(11), Bi(2)LaMnSb(2)O(11) and Bi(2)LaFeSb(2)O(11) adopt KSbO(3)-type structure (space group, Pn (3) over bar). The structure can be described through three interpenetrating networks where the first is the (M/Sb)O(6) octahedral network and other two are the identical networks having Bi(6)O(4) composition. The magnetic measurements on Bi(2)LaCrSb(2)O(11) and Bi(2)LaMnSb(2)O(11) show paramagnetic behaviour with magnetic moments close to the expected spin only magnetic moments of Cr(+3) and Mn(+3). The UV-Visible diffuse reflectance spectra are broad and indicate that these materials possess a bandgap of similar to 2 eV. The photocatalytic activity of these materials has been investigated by degrading Malachite Green (MG) under exposure to UV light.
Resumo:
Nanoparticles (dia ~ 5 - 7 nm) of Bi0.5X0.5(X=Ca,Sr)MnO3 are prepared by polymer assisted sol-gel method and characterized by various physico-chemical techniques. X-ray diffraction gives evidence for single phasic nature of the materials as well as their structures. Mono dispersed to a large extent, isolated nanoparticles are seen in the transmission electron micrographs. High resolution electron microscopy shows the crystalline nature of the nanoparticles. Superconducting quantum interferometer based magnetic measurements from 10K to 300K show that these nanomanganites retain the charge ordering nature unlike Pr and Nd based nanomanganites. The CO in Bi based manganites is thus found to be very robust consistent with the observation that magnetic field of the order of 130 T are necessary to melt the CO in these compounds. These results are supported by electron magnetic resonance measurements.
Resumo:
Hybrid inorganic-organic framework materials exhibit unique properties that can be advantageously tuned through choice of the inorganic and organic components and by control of the crystal structure. We present a new hydrothermally prepared 3D hybrid framework, [Mn(2-methylsuccinate)](n) (1), comprising alternating 2D manganese oxide sheets and isolated MnO(6) octahedra, pillared via syn, anti-syn carboxylates. Powder magnetic characterization shows that the compound is a homospin Mn(II) ferrimagnet below 2.4 K. The easy-axis is revealed by single-crystal magnetic susceptibility studies and a magnetic structure is proposed. Anisotropic elastic moduli and hardness, observed through nanoindentation on differing crystal facets, were correlated with specific structural features. Such measurements of anisotropy are not commonly undertaken, yet allow for a more comprehensive understanding of structure-property relationships.
Resumo:
We present a simplified theoretical formulation of the Fowler-Nordheim field emission (FNFE) under magnetic quantization and also in quantum wires of optoelectronic materials on the basis of a newly formulated electron dispersion law in the presence of strong electric field within the framework of k.p formalism taking InAs, InSb, GaAs, Hg(1-x)Cd(x)Te and In(1-x)Ga(x) As(y)P(1-y) lattice matched to InP as examples. The FNFE exhibits oscillations with inverse quantizing magnetic field and electron concentration due to SdH effect and increases with increasing electric field. For quantum wires the FNFE increases with increasing film thickness due to the existence van-Hove singularity and the magnitude of the quantum jumps are not of same height indicating the signature of the band structure of the material concerned. The appearance of the humps of the respective curves is due to the redistribution of the electrons among the quantized energy levels when the quantum numbers corresponding to the highest occupied level changes from one fixed value to the others. Although the field current varies in various manners with all the variables in all the limiting cases as evident from all the curves, the rates of variations are totally band-structure dependent. Under certain limiting conditions, all the results as derived in this paper get transformed in to well known Fowler-Nordheim formula. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Nanocrystalline zinc ferrite (ZFO) has been synthesized from metal acetylacetonates by microwave irradiation for 5 min in the presence of a surfactant. The as-prepared material is ZFO and has been subjected in air to conventional furnace annealing and to rapid annealing at different temperatures. Both annealing protocols lead to well-crystallized ZFO, with crystallite sizes in the range similar to 8-20 nm, which is ferrimagnetic, even at room temperature, with magnetization attaining saturation. While the magnetization M(S) of conventionally annealed ZFO varies with crystallite size in the expected manner, rapid annealing leads to high M(S) even when the crystallite size is relatively large. The coercivity is greater in the conventionally annealed ZFO. Thermal and magnetic measurements suggest that the inhomogeneous site cationic distribution within each crystallite caused by rapid annealing can be used to tailor the magnetic behaviour of nanocrystalline ferrites.
Resumo:
The change in thermodynamic quantities (e. g., entropy, specific heat etc.) by the application of magnetic field in the case of the high-T-c superconductor YBCO system is examined phenomenological by the Ginzburg-Landau theory of anisotropic type-II superconductors. An expression for the change in the entropy (Delta S) and change in specific heat (Delta C) in a magnetic field for any general orientation of an applied magnetic field B-a with respect to the crystallographic c-axis is obtained. The observed large reduction of specific heat anomaly just below the superconducting transition and the observed variation of entropy with magnetic field are explained quantitatively.