908 resultados para Macadamia nut -- Genetics.
Resumo:
[EN] Complex population structure has been described for the loggerhead sea turtle (Caretta caretta), revealing lower levels of population genetic structure in nuclear compared to mitochondrial DNA assays. This may result from mating during spatially overlapping breeding migrations, or male-biased dispersal as previously found for the green turtle (Chelonia mydas). To further investigate these multiple possibilities, we carried out a comparative analysis from twelve newly developed microsatellite loci and the mitochondrial DNA control region (~804 bp) in adult females of the Cape Verde Islands (n=158), and Georgia, USA (n=17).
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Vias de Comunicação e Transportes
Resumo:
Phytophthora cinnamomi is a major pathogen in most macadamia plantations worldwide. Due to stem lesions, stem cankers and leaf defoliation it results in loss of productivity and tree death. In this study we examined accessions of the four Macadamia species and their hybrids, produced via rooted stem cuttings or germinated seeds, for susceptibility to stem canker and necrotic lesion caused by P. cinnamomi. Plants were wound-inoculated with agar containing P. cinnamomi. The symptoms produced in inoculated plants were used to characterize host susceptibility variation within and among the population. Lesion lengths and severity of stem canker were recorded. The four species and hybrids differed significantly in stem canker severity (P < 0.001) and lesion length (P = 0.04). M. integrifolia and M. tetraphylla hybrids were the most susceptible. M. integrifolia had the greatest stem canker severity and the most extensive lesions above and below the site of inoculation. Restricted lesion sizes were observed in M. ternifolia and M. jansenii. The effects of basal stem diameter and the method of propagation either from cuttings or seed were not significant. The genetic variation in the reactions of macadamia accessions to stem infection by P. cinnamomi is discussed.
Resumo:
Phytophthora cinnamomi is a major pathogen of cultivated macadamia (Macadamia integrifolia, Macadamia tetraphylla and their hybrids) worldwide. The susceptibility of the two non-edible Macadamia species (Macadamia ternifolia and Macadamia jansenii) to P. cinnamomi is not well-understood. Commercial macadamia trees are established on grafted seedling (seed propagation) or own-rooted cutting (vegetative propagation) rootstocks of hybrids of the cultivated species. There is little information to support the preferential use of rootstock propagated by either seedling or own-rooted cutting methods in macadamia. In this study we assessed roots of macadamia plants of the four species and their hybrids, derived from the two methods of propagation, for their susceptibility to P. cinnamomi infection. The roots of inoculated plant from which P. cinnamomi was recovered showed blackening symptoms. The non-cultivated species, M. ternifolia and M. jansenii and their hybrids were the most susceptible germplasm compared with M. tetraphylla and M. integrifolia. Of these two species, M. tetraphylla was less susceptible than M. integrifolia. Significant differences were observed among the accessions of their hybrids. A strong association (R2 > 0.75) was recorded between symptomatic roots and disease severity. Root density reduced with increasing disease severity rating in both own-rooted cuttings (R2 = 0.65) and germinated seedlings (R2 = 0.55). P. cinnamomi severity data were not significantly (P > 0.05) different between the two methods of plant propagation. The significance of this study to macadamia breeding and selection of disease resistant rootstocks is discussed.
Resumo:
This chapter discusses the botany and history, importance, breeding and genetics, molecular genetics, micropropagation (to control viruses), somatic cell genetics, genetic manipulation and cryopreservation of banana and plantain.
Resumo:
Tese de Doutoramento, Biologia (Ecologia Vegetal), 25 de Junho de 2013, Universidade dos Açores.
Resumo:
Tese de Doutoramento, Biologia (Ecologia Vegetal), 24 de Junho de 2013, Universidade dos Açores.
Resumo:
Dissertação de Mestrado, Biodiversidade e Biotecnologia Vegetal, 6 de Julho de 2016, Universidade dos Açores.
Resumo:
'Abnormal vertical growth' (AVG) was recognised in Australia as a dysfunction of macadamia (Macadamia spp.) in the mid-1990s. Affected trees displayed unusually erect branching, and poor flowering and yield. Since 2002, the commercial significance of AVG, its cause, and strategies to alleviate its affects, has been studied. The cause is still unknown, and AVG remains a serious threat to orchard viability. AVG affects both commercial and urban macadamia. It occurs predominantly in the warmer-drier production regions of Queensland and New South Wales. An estimated 100,000 orchard trees are affected, equating to an annual loss of $ 10.5 M. In orchards, AVG occurs as aggregations of affected trees, affected tree number can increase by 4.5% per year, and yield reduction can exceed 30%. The more upright cultivars 'HAES 344' and '741' are highly susceptible, while the more spreading cultivars 'A4', 'A16' and 'A268' show tolerance. Incidence is higher (p<0.05) in soils of high permeability and good drainage. No soil chemical anomaly has been found. Fine root dry weight of AVG trees (0-15 cm depth) was found lower (p<0.05) than non-AVG. Next generation sequencing has led to the discovery of a new Bacillus sp. and a bipartite Geminivirus, which may have a role in the disease. Trunk cinctures will increase (p<0.05) yield of moderately affected trees. Further research is needed to clarify whether a pathogen is the cause, the role of soil moisture in AVG, and develop a varietal solution.
Resumo:
Rootstock has profound effects on traits such as yield and tree size in various horticultural industries, however relatively little is known about rootstock effects for macadamia. In this study, 12 cultivars were propagated as open-pollinated seedling and clonal rootstocks, and own-rooted cuttings. The same cultivars were also used as scions, and grafted to a subset of rootstocks, then planted at four trial locations. In this preliminary analysis, rootstock accounted for 19% of the variance in yield compared with 72% for scion, and 23% in height compared with 72% for scion. There was no interaction between rootstock and scion for yield, and only a small effect for height. The interaction between rootstock and propagation method (seedling, clonal, own roots) was not significant for height. A small effect was observed for yield, with the own roots treatment producing significantly lower yield than grafted trees for all rootstock cultivars except 'HAES 849'. 'H2' seedling rootstock produced a cumulative yield to age 10 years of 11.1 kg tree -1 compared to the highest yield of 13.6 kg tree -1 for 'Beaumont' clonal rootstocks. 'H2' seedling rootstock produced 4.8 m trees at age 11 years, compared to the smallest grafted tree which was 'HAES 849' seedling at 4.7 m.
Resumo:
Anemone fishes are a group of 28 species of coral reef fishes belonging to the family Pomacentridae, subfamily Amphiprioninae and all have an obligate symbiotic relationship with sea anemones. Two species of these small ornamental fishes have been identified in the Persian Gulf including Amphiprion clarkii and A. sebae. The phylogenetic relationship between Amphiprion species of the Persian Gulf was studied by collecting 15 samples from three Iranian islands, Larak, Farur and Kish. DNA was extracted from each sample and a part of mtDNA was amplified. Two pairs of primers were designed to amplify a final target of 400 by nested-PCR. Each amplicon was sequenced, aligned and genetic diversity among samples was investigated by phylogenetic analysis. Results show that there is no significant genetic variation among A. clarkii individuals; however, A. sebae individuals from Larak were different from other fishes of the same species. Most probably this is due to the ability of A. clarkii to be symbiotant with all 10 species of host sea anemones which enables it to spread its own population in the 3 islands. However, A. sebae is observed to be symbiotant only with one host in the sea, therefore, has one option that reduces its distribution.
Resumo:
Incidence of dry flower disease of macadamia (Macadamia integrifolia), expressed as blight of the flowers, necrosis and dieback of the rachis, is increasing in Australia. In the 2012/13 production season, incidence of dry flower disease resulted in 10% to 30% yield loss in the affected orchards. Etiology of the disease has not been established. This study was established to characterise the disease and identify the causal pathogen. A survey of the major macadamia producing regions in Australia revealed dry flower disease symptoms, regardless of cultivar or location at all stages of raceme development. Based on colony and conidial morphology, the majority (41%) of fungal isolates obtained from tissue samples were identified as Pestalotiopsis and Neopestalotiopsis spp. The phylogeny of the combined partial sequence of the internal transcribed spacer, beta-tubulin and translation elongation factor 1-alpha gene loci, segregated the isolates into two well supported clades, independent of location or part of the inflorescence affected. Further morphological examination supported the establishment of two new species, which are formally described as Neopestalotiopsis macadamiae sp. nov. and Pestalotiopsis macadamiae sp. nov. Using spore suspensions of isolates of both species, Koch?s postulates were fulfilled on three macadamia cultivars at all stages of raceme development. To our knowledge, this is the first report of species of Neopestalotiopsis and Pestalotiopsis as causal agents of inflorescence disease in macadamia.