994 resultados para MIXED-LAYER
Resumo:
SST variability within the Atlantic cold tongue (ACT) region is of climatic relevance for the surrounding continents. A multi cruise data set of microstructure observations is used to infer regional as well as seasonal variability of upper ocean mixing and diapycnal heat flux within the ACT region. The variability in mixing intensity is related to the variability in large scale background conditions, which were additionally observed during the cruises. The observations indicate fundamental differences in background conditions in terms of shear and stratification below the mixed layer (ML) for the western and eastern equatorial ACT region causing critical Froude numbers (Fr) to be more frequently observed in the western equatorial ACT. The distribution of critical Fr occurrence below the ML reflects the regional and seasonal variability of mixing intensity. Turbulent dissipation rates (?) at the equator (2°N-2°S) are strongly increased in the upper thermocline compared to off-equatorial locations. In addition, ? is elevated in the western equatorial ACT compared to the east from May to November, whereas boreal summer appears as the season of highest mixing intensities throughout the equatorial ACT region, coinciding with ACT development. Diapycnal heat fluxes at the base of the ML in the western equatorial ACT region inferred from ? and stratification range from a maximum of 90 Wm-2 in boreal summer to 55 Wm-2 in September and 40 Wm-2 in November. In the eastern equatorial ACT region maximum values of about 25 Wm-2 were estimated during boreal summer reducing to about 5 Wm-2 towards the end of the year. Outside the equatorial region, inferred diapycnal heat fluxes are comparably low rarely exceeding 10 Wm-2. Integrating the obtained heat flux estimates in the ML heat budget at 10°W on the equator accentuates the diapycnal heat flux as the largest ML cooling term during boreal summer and early autumn. In the western equatorial ACT elevated meridional velocity shear in the upper thermocline contributes to the enhanced diapycnal heat flux within this region during boreal summer and autumn. The elevated meridional velocity shear appears to be associated with intra-seasonal wave activity.
Resumo:
The response of phytoplankton assemblages to hydrographical forcing across the southern Brazilian shelf was studied based on data collected during wintertime (June/2012), complemented with MODIS-Aqua satellite imagery. The in situ data set was comprised by water column structure properties (derived from CTD casts), dissolved inorganic nutrients (ammonium, nitrite, nitrate, phosphate and silicate) and phytoplankton biomass [chlorophyll a (Chl a) concentration] and composition. Phytoplankton assemblages were assessed by both microscopy and HPLC-CHEMTAX approaches. A canonical correspondence analysis associating physical, chemical and phytoplankton composition data at surface evinced a tight coupling between the phytoplankton community and hydrographic conditions, with remarkable environmental gradients across three different domains: the pelagic, outer shelf Tropical Water (TW); the mid shelf domain under influence of Subtropical Shelf Water (STSW); and the inner shelf domain mainly under influence of riverine outflow of the Plata River Plume Water (PPW). Results showed that intrusion of low salinity and nutrient-rich PPW stimulated the phytoplankton growth and diversity within the inner shelf region, with enhanced Chl a levels (>1.3 mg/m**3) and a great abundance of diatoms, ciliates, dinoflagellates, raphidophyceans and cryptophytes. Conversely, other diatoms (e.g. Rhizosolenia clevei), tiny species of prochlorophytes and cyanobacteria and a noticeable contribution of dinoflagellates and other flagellates associated with lower Chl a levels (<0.93 mg/m**3), characterized the TW domain, where low nutrient concentrations and deep upper mixed layer were found. The transitional mid shelf domain showed intermediate levels of both nutrients and Chl a (ranging 1.06-1.59 mg/m**3), and phytoplankton was mainly composed by dinoflagellates, such as Dinophysis spp., and gymnodinioids. Results have shown considerable phytoplankton diversity in winter at that section of the southwestern Atlantic Ocean.