945 resultados para Low-temperature plasma


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some important issues related to the self-organization in the arrays of nanoparticles on solid surfaces exposed to the low-temperature plasma are analysed and discussed. The available tools for the characterization of the size and position uniformity in nanoarrays are examined. The technique capable of revealing the realistic adsorbed atom and adsorbed radical capture zone pattern based on the surface physics is indicated as the most promising characterization tool. The processes responsible for the self-organization are analysed, the main driving forces of the self-organization are discussed, and possible ways to control the self-organization by controlling the plasma parameters are introduced. A view on the possible ways to further improve the methods of nanoarray characterization and self-organization is presented as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main issues related to control of energy and matter in hierarchical low-temperature plasma-solid systems used in nanoscale synthesis and processing are critically examined. A conceptual approach to identify the most effective carriers and transport mechanisms of energy and matter at the nano- and subnanometer scales in plasma-aided nanofabrication is proposed. This approach is highly relevant to the envisaged energy- and matter-efficient plasma-based production of the next-generation advanced nanomaterials for applications in the energy, environment, food, water, health, and security technologies critically needed for a sustainable future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advantages of using low-temperature plasma environments for postprocessing of dense nanotube arrays are shown by means of multiscale hybrid numerical simulations. By controlling plasma-extracted ion fluxes and varying the plasma and sheath parameters, one can selectively coat, dope, or functionalize different areas on nanotube surfaces. Conditions of uniform deposition of ion fluxes over the entire nanotube surfaces are obtained for different array densities. The plasma route enables a uniform processing of lateral nanotube surfaces in very dense (with a step-to-height ratio of 1:4) arrays, impossible via the neutral gas process wherein radical penetration into the internanotube gaps is poor. © 2006 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the application low-temperature plasmas for roughening Si surfaces which is becoming increasingly important for a number of applications ranging from Si quantum dots to cell and protein attachment for devices such as "laboratory on a chip" and sensors. It is a requirement that Si surface roughening is scalable and is a single-step process. It is shown that the removal of naturally forming SiO2 can be used to assist in the roughening of the surface using a low-temperature plasma-based etching approach, similar to the commonly used in semiconductor micromanufacturing. It is demonstrated that the selectivity of SiO2 /Si etching can be easily controlled by tuning the plasma power, working gas pressure, and other discharge parameters. The achieved selectivity ranges from 0.4 to 25.2 thus providing an effective means for the control of surface roughness of Si during the oxide layer removal, which is required for many advance applications in bio- and nanotechnology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetics of saturation of Ni catalyst nanoparticle patterns of the three different degrees of order, used as a model for the growth of carbon nanotips on Si, is investigated numerically using a complex model that involves surface diffusion and ion motion equations. It is revealed that Ni catalyst patterns of different degrees of order, with Ni nanoparticle sizes up to 12.5 nm, exhibit different kinetics of saturation with carbon on the Si surface. It is shown that in the cases examined (surface coverage in the range of 1-50%, highly disordered Ni patterns) the relative pattern saturation factor calculated as the ratio of average incubation times for the processes conducted in the neutral and ionized gas environments reaches 14 and 3.4 for Ni nanoparticles of 2.5 and 12.5 nm, respectively. In the highly ordered Ni patterns, the relative pattern saturation factor reaches 3 for nanoparticles of 2.5 nm and 2.1 for nanoparticles of 12.5 nm. Thus, more simultaneous saturation of Ni catalyst nanoparticles of sizes in the range up to 12.5 nm, deposited on the Si substrate, can be achieved in the low-temperature plasma environment than with the neutral gas-based process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth of carbon nanocone arrays on metal catalyst particles by deposition from a low-temperature plasma is studied by multiscale Monte Carlo/surface diffusion numerical simulation. It is demonstrated that the variation in the degree of ionization of the carbon flux provides an effective control of the growth kinetics of the carbon nanocones, and leads to the formation of more uniform arrays of nanostructures. In the case of zero degree of ionization (neutral gas process), a width of the distribution of nanocone heights reaches 360 nm with the nanocone mean height of 150 nm. When the carbon flux of 75% ionization is used, the width of the distribution of nanocone heights decreases to 100 nm, i.e., by a factor of 3.6. A higher degree of ionization leads to a better uniformity of the metal catalyst saturation and the nanocone growth, thus contributing to the formation of more height-uniform arrays of carbon nanostructures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results of numerical simulation of plasma-based, porous, template-assisted nanofabrication of Au nanodot arrays on highly-doped silicon taking into account typical electron density of low-temperature plasma of 1017-1018 m-3 and electron temperature of 2-5 eV are reported here. Three-dimensional microscopic topography of ion flux distribution over the outer and inner surfaces of the nanoporous template is obtained via numerical simulation of Au ion trajectories in the plasma sheath, in the close proximity of, and inside the nanopores. It is shown that, by manipulating the electron temperature, the cross-sheath potential drop, and by additionally altering the structure of the nanoporous template, one can control the ion fluxes within the nanopores, and eventually maximize the ion deposition onto the top surface of the developing crystalline Au nanodots (see top panel in the figure). In the same time, this procedure allows one to minimize amorphous deposits on the sidewalls that clutter and may eventually close the nanopores, thus disrupting the nanodot growth process, as it is shown in the bottom panel in the figure on the right.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogen rearrangements at the H*2 complex are used as a model of low energy, local transitions in the two-hydrogen density of states of hydrogenated amorphous silicon (a-Si:H). These are used to account for the low activation energy motion of H observed by nuclear magnetic resonance, the low energy defect annealing of defects formed by bias stress in thin film transistors, and the elimination of hydrogen from the growth zone during the low temperature plasma deposition of a-Si:H. © 1998 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High power lasers are a tool that can be used to determine important parameters in the context of Warm Dense Matter, i.e. at the convergence of low-temperature plasma physics and finite-temperature condensed matter physics. Recent results concerning planet inner core materials such as water and iron are presented. We determined the equation of state, temperature and index of refraction of water for pressures up to 7 Mbar. The release state of iron in a LiF window allowed us to investigate the melting temperature near the inner core boundary conditions. Finally, the first application of proton radiography to the study of shocked material is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anisotropy of thermal stresses in confined dusty plasmas is considered. It is shown that in a multi-component low-temperature plasma containing electrons, ions and dust, the complicated dependence of the ion viscosity on ion temperature gradients leads to a plasma equilibrium state with anisotropic pressure. This pressure anisotropy can be of the order of the ion pressure in some limiting cases, in which the ion Larmor radius or the ion mean free path are of the order of the characteristic length of the plasma nonuniformity. For a sufficiently large dust number density, they contribute to the plasma pressure anisotropy and to its spatial dependence. Currently, it is not yet clear whether this equilibrium state is stable or not. Under these conditions, some convective plasma flows can arise in confinement devices. Therefore, this question needs special consideration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Operation regimes, plasma parameters, and applications of the low-frequency (∼500 kHz) inductively coupled plasma (ICP) sources with a planar external coil are investigated. It is shown that highly uniform, high-density (ne∼9×1012 cm-3) plasmas can be produced in low-pressure argon discharges with moderate rf powers. The low-frequency ICP sources operate in either electrostatic (E) or electromagnetic (H) regimes in a wide pressure range without any Faraday shield or an external multipolar magnetic confinement, and exhibit high power transfer efficiency, and low circuit loss. In the H mode, the ICP features high level of uniformity over large processing areas and volumes, low electron temperatures, and plasma potentials. The low-density, highly uniform over the cross-section, plasmas with high electron temperatures and plasma and sheath potentials are characteristic to the electrostatic regime. Both operation regimes offer great potential for various plasma processing applications. As examples, the efficiency of the low-frequency ICP for steel nitriding and plasma-enhanced chemical vapor deposition of hydrogenated diamond-like carbon (DLC) films, is demonstrated. It appears possible to achieve very high nitriding rates and dramatically increase micro-hardness and wear resistance of the AISI 304 stainless steel. It is also shown that the deposition rates and mechanical properties of the DLC films can be efficiently controlled by selecting the discharge operating regime.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A low-pressure methane plasma generated by electron cyclotron wave resonance was characterized in terms of electron temperature, plasma density and composition. Methane plasmas were commonly used in the deposition of hydrogenated amorphous carbon thin films. Little variation in the plasma chemistry was observed by mass spectrometry measurements of the gas phase with increasing electron temperature. The results show that direct electron-impact reactions exert greater influence on the plasma chemistry than secondary ion-neutral reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To heteroepitaxally grow the crystalline cubic-GaN (c-GaN) film on the substrates with large lattice mismatch is basically important for fabricating the blue or ultraviolet laser diodes based on cubic group III nitride materials. We have obtained the crystalline c-GaN film and the heteroepitaxial interface between c-Gan and GaAs (001) substrate by the ECR Plasma-Assisted Metal Organic Chemical Vapor Deposition (PA-MOCVD) under low-pressure and low-temperature (similar to600degreesC) on a homemade ECR-plasma Semiconductor Processing Device (ESPD). In order to decrease the growth temperature, the ECR plasma source was adopted as the activated nitrogen source, therefore the working pressure of MOCVD was decreased down to the region less than 1 Pa. To eliminate the damages from energetic ions of current plasma source, a Multi-cusp cavity,coupling ECR Plasma source (MEP) was selected to use in our experiment. To decrease the strain and dislocations induced from the large lattice mismatch between c-GaN and GaAs substrate, the plasma pretreatment procedure i.e., the initial growth technique was investigated The experiment arrangements, the characteristics of plasma and the growth procedure, the characteristics on-GaN film and interface between c-GaN and GaAs(001), and the roles of ECR plasma are described in this contribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A time-resolved Langmuir probe technique is used to measure the dependence of the electron density, electron temperature, plasma potential and electron energy distribution function (EEDF) on the phase of the driving voltage in a RF driven parallel plate discharge. The measurements were made in a low-frequency (100-500 kHz), symmetrically driven, radio frequency discharge operating in H-2, D-2 and Ar at gas pressures of a few hundred millitorr. The EEDFs could not be represented by a single Maxwellian distribution and resembled the time averaged EEDFs reported in 13.56 MHz discharges. The measured parameters showed structure in their spatial and temporal dependence, generally consistent with a simple oscillating sheath model. Electron temperatures of less than 0.1 eV were measured during the phase of the RF cycle when both electrodes are negative with respect to the plasma.