934 resultados para Low resolution brain tomography (LORETA)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fetal rat telencephalon organotypic cell culture system was found to reproduce the developmental pattern of Na-K-adenosinetriphosphatase (ATPase) gene expression observed in vivo [Am. J. Physiol. 258 (Cell Physiol. 27): C1062-C1069, 1990]. We have used this culture system to study the effects of triiodothyronine (T3; 0.003-30 nM) on mRNA abundance and basal transcription rates of Na-K-ATPase isoforms. Steady-state mRNA levels were low at culture day 6 (corresponding to the day of birth) but distinct for each isoform alpha 3 much greater than beta 1 = beta 2 greater than alpha 2 greater than alpha 1. At culture day 6, T3 did not modify mRNA abundance of any isoform. At culture day 12 (corresponding to day 7 postnatal), T3 increased the mRNA level of alpha 2 (4- to 7-fold), beta 2 (4- to 5-fold), alpha 1 (3- to 6-fold), and beta 1 (1.5-fold), whereas alpha 3 mRNA levels remained unchanged. Interestingly, the basal transcription rate for each isoform differed strikingly (alpha 2 greater than alpha 1 much greater than beta 1 = beta 2 greater than alpha 3) but remained stable throughout 12 days of culture and was not regulated by T3. Thus we observed an inverse relationship between rate of transcription and rate of mRNA accumulation for each alpha-isoform, suggesting that alpha 1- and alpha 2-mRNA are turning over rapidly whereas alpha 3-mRNA is turning over slowly. Our data indicate that one of the mechanisms by which T3 selectively controls Na-K-ATPase gene expression during brain development in vitro occurs at the posttranscriptional level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a low-cost microprocessed instrument for in situ evaluating soil temperature profile ranging from -20.0°C to 99.9°C, and recording soil temperature data at eight depths from 2 to 128 cm. Of great importance in agriculture, soil temperature affects plant growth directly, and nutrient uptake as well as indirectly in soil water and gas flow, soil structure and nutrient availability. The developed instrument has potential applications in the soil science, when temperature monitoring is required. Results show that the instrument with its individual sensors guarantees ±0.25°C accuracy and 0.1°C resolution, making possible localized management changes within decision support systems. The instrument, based on complementary metal oxide semiconductor devices as well as thermocouples, operates in either automatic or non-automatic mode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous functional imaging studies have pointed to the compensatory recruitment of cortical circuits in old age in order to counterbalance the loss of neural efficiency and preserve cognitive performance. Recent electroencephalographic (EEG) analyses reported age-related deficits in the amplitude of an early positive-negative working memory (PN(wm)) component as well as changes in working memory (WM)-load related brain oscillations during the successful performance of the n-back task. To explore the age-related differences of EEG activation in the face of increasing WM demands, we assessed the PN(wm) component area, parietal alpha event-related synchronization (ERS) as well as frontal theta ERS in 32 young and 32 elderly healthy individuals who successfully performed a highly WM demanding 3-back task. PN(wm) area increased with higher memory loads (3- and 2-back > 0-back tasks) in younger subjects. Older subjects reached the maximal values for this EEG parameter during the less WM demanding 0-back task. They showed a rapid development of an alpha ERS that reached its maximal amplitude at around 800 ms after stimulus onset. In younger subjects, the late alpha ERS occurred between 1,200 and 2,000 ms and its amplitude was significantly higher compared with elders. Frontal theta ERS culmination peak decreased in a task-independent manner in older compared with younger cases. Only in younger individuals, there was a significant decrease in the phasic frontal theta ERS amplitude in the 2- and 3-back tasks compared with the detection and 0-back tasks. These observations suggest that older adults display a rapid mobilization of their neural generators within the parietal cortex to manage very low demanding WM tasks. Moreover, they are less able to activate frontal theta generators during attentional tasks compared with younger persons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Use of radiolabeled nucleotides for tumor imaging is hampered by rapid in vivo degradation and low DNA-incorporation rates. We evaluated whether blocking of thymidine (dThd) synthesis by 5-fluoro-2'-deoxyuridine (FdUrd) could improve scintigraphy with radio-dThd analogues, such as 5-iodo-2'-deoxyuridine (IdUrd). We first show in vitro that coincubation with FdUrd substantially increased incorporation of [125I]IdUrd and [3H]dThd in the three tested human glioblastoma lines. Flow cytometry analysis showed that a short coincubation with FdUrd (1 h) produces a signal increase per labeled cell. We then measured biodistribution 24 h after i.v. injection of [125I]IdUrd in nude mice s.c. xenografted with the three glioblastoma lines. Compared with animals given [125I]IdUrd alone, i.v. preadministration for 1 h of 10 mg/kg FdUrd increased the uptake of [125I]IdUrd in the three tumors 4.8-6.8-fold. Compatible with previous reports, there were no side effects in mice observed for 2 months after receiving such a treatment. The tumor uptake of [125I]IdUrd was increased < or =13.6-fold when FdUrd preadministration was stepwise reduced to 1.1 mg/kg. Uptake increases remained lower (between 1.7- and 5.8-fold) in normal proliferating tissues (i.e., bone marrow, spleen, and intestine) and negligible in quiescent tissues. DNA extraction showed that 72-80% of radioactivity in tumor and intestine was bound to DNA. Scintigraphy of xenografted mice was performed at different times after i.v. injection of 3.7 MBq [125I]IdUrd. Tumor detection was significantly improved after FdUrd preadministration while still equivocal after 24 h in mice given [125I]IdUrd alone. Furthermore, background activity could be greatly reduced by p.o. administration of KClO4 in addition to potassium iodide. We conclude that FdUrd preadministration may improve positron or single photon emission tomography with cell division tracers, such as radio-IdUrd and possibly other dThd analogues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integration of geophysical data into the subsurface characterization problem has been shown in many cases to significantly improve hydrological knowledge by providing information at spatial scales and locations that is unattainable using conventional hydrological measurement techniques. In particular, crosshole ground-penetrating radar (GPR) tomography has shown much promise in hydrology because of its ability to provide highly detailed images of subsurface radar wave velocity, which is strongly linked to soil water content. Here, we develop and demonstrate a procedure for inverting together multiple crosshole GPR data sets in order to characterize the spatial distribution of radar wave velocity below the water table at the Boise Hydrogeophysical Research Site (BHRS) near Boise, Idaho, USA. Specifically, we jointly invert 31 intersecting crosshole GPR profiles to obtain a highly resolved and consistent radar velocity model along the various profile directions. The model is found to be strongly correlated with complementary neutron porosity-log data and is further corroborated by larger-scale structural information at the BHRS. This work is an important prerequisite to using crosshole GPR data together with existing hydrological measurements for improved groundwater flow and contaminant transport modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this investigation, high-resolution, 1x1x1-mm(3) functional magnetic resonance imaging (fMRI) at 7 T is performed using a multichannel array head coil and a surface coil approach. Scan geometry was optimized for each coil separately to exploit the strengths of both coils. Acquisitions with the surface coil focused on partial brain coverage, while whole-brain coverage fMRI experiments were performed with the array head coil. BOLD sensitivity in the occipital lobe was found to be higher with the surface coil than with the head array, suggesting that restriction of signal detection to the area of interest may be beneficial for localized activation studies. Performing independent component analysis (ICA) decomposition of the fMRI data, we consistently detected BOLD signal changes and resting state networks. In the surface coil data, a small negative BOLD response could be detected in these resting state network areas. Also in the data acquired with the surface coil, two distinct components of the positive BOLD signal were consistently observed. These two components were tentatively assigned to tissue and venous signal changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Matrix sublimation has demonstrated to be a powerful approach for high-resolution matrix-assisted laser desorption ionization (MALDI) imaging of lipids, providing very homogeneous solvent-free deposition. This work presents a comprehensive study aiming to evaluate current and novel matrix candidates for high spatial resolution MALDI imaging mass spectrometry of lipids from tissue section after deposition by sublimation. For this purpose, 12 matrices including 2,5-dihydroxybenzoic acid (DHB), sinapinic acid (SA), α-cyano-4-hydroxycinnamic acid (CHCA), 2,6-dihydroxyacetphenone (DHA), 2',4',6'-trihydroxyacetophenone (THAP), 3-hydroxypicolinic acid (3-HPA), 1,8-bis(dimethylamino)naphthalene (DMAN), 1,8,9-anthracentriol (DIT), 1,5-diaminonapthalene (DAN), p-nitroaniline (NIT), 9-aminoacridine (9-AA), and 2-mercaptobenzothiazole (MBT) were investigated for lipid detection efficiency in both positive and negative ionization modes, matrix interferences, and stability under vacuum. For the most relevant matrices, ion maps of the different lipid species were obtained from tissue sections at high spatial resolution and the detected peaks were characterized by matrix-assisted laser desorption ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) mass spectrometry. First proposed for imaging mass spectrometry (IMS) after sublimation, DAN has demonstrated to be of high efficiency providing rich lipid signatures in both positive and negative polarities with high vacuum stability and sub-20 μm resolution capacity. Ion images from adult mouse brain were generated with a 10 μm scanning resolution. Furthermore, ion images from adult mouse brain and whole-body fish tissue sections were also acquired in both polarity modes from the same tissue section at 100 μm spatial resolution. Sublimation of DAN represents an interesting approach to improve information with respect to currently employed matrices providing a deeper analysis of the lipidome by IMS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Despite dramatic advances in all medical era, cerebral vasospasm is still the major complication in patients with subarachnoid hemorrhage (SAH). The purpose of this study was to assess the influence of intraarterial (IA) nimodipine in the treatment of symptomatic vasospasm and in preventing neurological disabilities. MATERIALS AND METHODS: We retrospectively reviewed 10 patients of SAH who received IA nimodipine in 15 procedures. The decision to perform angiography and endovascular treatment was based on the neurological examination, brain computed tomography (CT) and CT-angiography. The procedure reports, anesthesia records, neurological examination before and after the procedure, brain imaging and short- and long-term outcome were studied. RESULTS: The average dose of nimodipine was 2 mg. The median change in mean arterial pressure at 10 min was -10 mmHg. No significant change of heart rate was observed at 10 min. There was radiological improvement in 80% of the procedures. Neurological improvement was noted after eight out of 12 procedures when nimodipine was used as the sole treatment and after 10 out of 15, overall. Six patients clinically improved after the treatment and had good outcome. In one patient, an embolus caused fatal anterior and middle cerebral arteries infarction. There was no other neurological deficit or radiological abnormality due to the nimodipine treatment itself. CONCLUSION: Low-dose IA nimodipine is a valid adjunct for the endovascular treatment of cerebral vasospasm. Beneficial effects are achieved in some patients, prompting a prospective control study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acoustic waveform inversions are an increasingly popular tool for extracting subsurface information from seismic data. They are computationally much more efficient than elastic inversions. Naturally, an inherent disadvantage is that any elastic effects present in the recorded data are ignored in acoustic inversions. We investigate the extent to which elastic effects influence seismic crosshole data. Our numerical modeling studies reveal that in the presence of high contrast interfaces, at which P-to-S conversions occur, elastic effects can dominate the seismic sections, even for experiments involving pressure sources and pressure receivers. Comparisons of waveform inversion results using a purely acoustic algorithm on synthetic data that is either acoustic or elastic, show that subsurface models comprising small low-to-medium contrast (?30%) structures can be successfully resolved in the acoustic approximation. However, in the presence of extended high-contrast anomalous bodies, P-to-S-conversions may substantially degrade the quality of the tomographic images. In particular, extended low-velocity zones are difficult to image. Likewise, relatively small low-velocity features are unresolved, even when advanced a priori information is included. One option for mitigating elastic effects is data windowing, which suppresses later arriving seismic arrivals, such as shear waves. Our tests of this approach found it to be inappropriate because elastic effects are also included in earlier arriving wavetrains. Furthermore, data windowing removes later arriving P-wave phases that may provide critical constraints on the tomograms. Finally, we investigated the extent to which acoustic inversions of elastic data are useful for time-lapse analyses of high contrast engineered structures, for which accurate reconstruction of the subsurface structure is not as critical as imaging differential changes between sequential experiments. Based on a realistic scenario for monitoring a radioactive waste repository, we demonstrated that acoustic inversions of elastic data yield substantial distortions of the tomograms and also unreliable information on trends in the velocity changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: To compare morphological gross tumor volumes (GTVs), defined as pre- and postoperative gadolinium enhancement on T1-weighted magnetic resonance imaging to biological tumor volumes (BTVs), defined by the uptake of (18)F fluoroethyltyrosine (FET) for the radiotherapy planning of high-grade glioma, using a dedicated positron emission tomography (PET)-CT scanner equipped with three triangulation lasers for patient positioning. METHODS: Nineteen patients with malignant glioma were included into a prospective protocol using FET PET-CT for radiotherapy planning. To be eligible, patients had to present with residual disease after surgery. Planning was performed using the clinical target volume (CTV = GTV union or logical sum BTV) and planning target volume (PTV = CTV + 20 mm). First, the interrater reliability for BTV delineation was assessed among three observers. Second, the BTV and GTV were quantified and compared. Finally, the geometrical relationships between GTV and BTV were assessed. RESULTS: Interrater agreement for BTV delineation was excellent (intraclass correlation coefficient 0.9). Although, BTVs and GTVs were not significantly different (p = 0.9), CTVs (mean 57.8 +/- 30.4 cm(3)) were significantly larger than BTVs (mean 42.1 +/- 24.4 cm(3); p < 0.01) or GTVs (mean 38.7 +/- 25.7 cm(3); p < 0.01). In 13 (68%) and 6 (32%) of 19 patients, FET uptake extended >or= 10 and 20 mm from the margin of the gadolinium enhancement. CONCLUSION: Using FET, the interrater reliability had excellent agreement for BTV delineation. With FET PET-CT planning, the size and geometrical location of GTVs and BTVs differed in a majority of patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent multisensory research has emphasized the occurrence of early, low-level interactions in humans. As such, it is proving increasingly necessary to also consider the kinds of information likely extracted from the unisensory signals that are available at the time and location of these interaction effects. This review addresses current evidence regarding how the spatio-temporal brain dynamics of auditory information processing likely curtails the information content of multisensory interactions observable in humans at a given latency and within a given brain region. First, we consider the time course of signal propagation as a limitation on when auditory information (of any kind) can impact the responsiveness of a given brain region. Next, we overview the dual pathway model for the treatment of auditory spatial and object information ranging from rudimentary to complex environmental stimuli. These dual pathways are considered an intrinsic feature of auditory information processing, which are not only partially distinct in their associated brain networks, but also (and perhaps more importantly) manifest only after several tens of milliseconds of cortical signal processing. This architecture of auditory functioning would thus pose a constraint on when and in which brain regions specific spatial and object information are available for multisensory interactions. We then separately consider evidence regarding mechanisms and dynamics of spatial and object processing with a particular emphasis on when discriminations along either dimension are likely performed by specific brain regions. We conclude by discussing open issues and directions for future research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of external factors on food preferences and choices is poorly understood. Knowing which and how food-external cues impact the sensory processing and cognitive valuation of food would provide a strong benefit toward a more integrative understanding of food intake behavior and potential means of interfering with deviant eating patterns to avoid detrimental health consequences for individuals in the long run. We investigated whether written labels with positive and negative (as opposed to 'neutral') valence differentially modulate the spatio-temporal brain dynamics in response to the subsequent viewing of high- and low-energetic food images. Electrical neuroimaging analyses were applied to visual evoked potentials (VEPs) from 20 normal-weight participants. VEPs and source estimations in response to high- and low- energy foods were differentially affected by the valence of preceding word labels over the ~260-300 ms post-stimulus period. These effects were only observed when high-energy foods were preceded by labels with positive valence. Neural sources in occipital as well as posterior, frontal, insular and cingulate regions were down-regulated. These findings favor cognitive-affective influences especially on the visual responses to high-energetic food cues, potentially indicating decreases in cognitive control and goal-adaptive behavior. Inverse correlations between insular activity and effectiveness in food classification further indicate that this down-regulation directly impacts food-related behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The appearance of immunoreactive alpha-melanotropin (alpha-MSH) and adrenocorticotropin (ACTH) during development was studied in 3 areas of the rat brain--cerebral hemispheres, midbrain and hindbrain--from embryonic day (ED) 13-14 until day 21 postnatally. The alpha-MSH content in vivo was always highest in the midbrain; a peak content at birth was followed by a transient decline and a later, higher plateau from postnatal day 7 onwards. The alpha-MSH content in the cerebral hemispheres rose progressively after birth reaching a peak at day 21. Values in the hindbrain rose at day 3 and changed relatively sue taken at ED 15-16 showed a gradual increase in alpha-MSH content over the 20 days. The alpha-MSH content of hindbrain cultures remained at constant low levels, while no alpha-MSH was detectable in cerebral hemisphere cultures. ACTH appeared in vivo earlier than alpha-MSH and was detectable in embryonic brains at ED 13-14. A transient rise was seen at ED 17-18 and major peaks at birth, day 2 and day 3, in the midbrain, hemispheres and hindbrain, respectively. In vitro, the ACTH content increased in all brain regions during the first 5 days in culture and showed no further change thereafter. Comparisons of the in vivo and in vitro development of alpha-MSH and ACTH demonstrate that (i) these two peptide systems are independent in respect to their localization and time of appearance; (ii) they undergo maturation both in vivo and in vitro; (iii) epigenetic factors, such as interactions with other neurotransmitter systems may modulate the developmental pattern of these two peptides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accumulating evidence supports a role for brain-derived neurotrophic factor (BDNF) in depression. However, most of these studies have been performed in animal models that have a low face validity with regard to the human disease. Here, we examined the regulation of BDNF expression in the hippocampus and amygdala of rats subjected to the chronic mild stress (CMS) model of depression, a paradigm that induces anhedonia, a core symptom of depression. We found that exposure of rats to the CMS paradigm did not modulate BDNF mRNA expression in the hippocampus and amygdala. In addition, chronic administration of imipramine, which reversed CMS-induced anhedonia, did not alter BDNF mRNA expression in these limbic structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Do our brains implicitly track the energetic content of the foods we see? Using electrical neuroimaging of visual evoked potentials (VEPs) we show that the human brain can rapidly discern food's energetic value, vis à vis its fat content, solely from its visual presentation. Responses to images of high-energy and low-energy food differed over two distinct time periods. The first period, starting at approximately 165 ms post-stimulus onset, followed from modulations in VEP topography and by extension in the configuration of the underlying brain network. Statistical comparison of source estimations identified differences distributed across a wide network including both posterior occipital regions and temporo-parietal cortices typically associated with object processing, and also inferior frontal cortices typically associated with decision-making. During a successive processing stage (starting at approximately 300 ms), responses differed both topographically and in terms of strength, with source estimations differing predominantly within prefrontal cortical regions implicated in reward assessment and decision-making. These effects occur orthogonally to the task that is actually being performed and suggest that reward properties such as a food's energetic content are treated rapidly and in parallel by a distributed network of brain regions involved in object categorization, reward assessment, and decision-making.