892 resultados para Low bandgap materials
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Biodegradable polymers are starting to be introduced as raw materials in the food-packaging market. Nevertheless, their price is very high. Starch, a fully biodegradable and bioderived polymer is a very interesting alternative due to its very low price. However, the use of starch as the polymer matrix for the production of rigid food packaging, such as trays, is limited due to its poor mechanical properties, high hidrophilicity and high density. This work presents two strategies to overcome the poor mechanical properties of starch. First, the plasticization of starch with several amounts of glycerol to produce thermoplastic starch (TPS) and second, the production of biocomposites by reinforcing TPS with promising fibers, such as barley straw and grape waste. The mechanical properties obtained are compared with the values predicted by models used in the field of composites; law of mixtures, Kerner-Nielsen and Halpin-Tsai. To evaluate if the materials developed are suitable for the production of food-packaging trays, the TPS-based materials with better mechanical properties were compared with commercial grades of oil-based polymers, polypropylene (PP) and polyethylene-terphthalate (PET), and a biodegradable polymer, polylactic acid (PLA).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: The search for alternative and effective forms of training simulation is needed due to ethical and medico-legal aspects involved in training surgical skills on living patients, human cadavers and living animals. Aims : To evaluate if the bench model fidelity interferes in the acquisition of elliptical excision skills by novice medical students. Materials and Methods: Forty novice medical students were randomly assigned to 5 practice conditions with instructor-directed elliptical excision skills' training (n = 8): didactic materials (control); organic bench model (low-fidelity); ethylene-vinyl acetate bench model (low-fidelity); chicken legs' skin bench model (high-fidelity); or pig foot skin bench model (high-fidelity). Pre- and post-tests were applied. Global rating scale, effect size, and self-perceived confidence based on Likert scale were used to evaluate all elliptical excision performances. Results : The analysis showed that after training, the students practicing on bench models had better performance based on Global rating scale (all P < 0.0000) and felt more confident to perform elliptical excision skills (all P < 0.0000) when compared to the control. There was no significant difference (all P > 0.05) between the groups that trained on bench models. The magnitude of the effect (basic cutaneous surgery skills' training) was considered large (>0.80) in all measurements. Conclusion : The acquisition of elliptical excision skills after instructor-directed training on low-fidelity bench models was similar to the training on high-fidelity bench models; and there was a more substantial increase in elliptical excision performances of students that trained on all simulators compared to the learning on didactic materials.
Resumo:
Solar heaters are an appropriate technology in tropical and sub-tropical climates to heat bath water by solar energy. Low-cost solar heaters meet the demand of low-income rural communities which currently do not have access to this technology. Current research analyzes the economic viability of solar heaters, built with recyclable materials, to reduce electric energy bill. A solar heating system was built consisting of recyclable materials in accordance with the manuals provided by the Secretariat of Environment of the state of Paraná (SEMA). Duration of use of electric showers by families of rural properties was determined to calculate expenses and billing of electricity. Simulation and material costs showed that the system was feasible. Commercial solar heaters could be replaced at a cost of R$ 22.61 per month during 13 months.
Resumo:
The complete I-V characteristics of SnO(2)-based varistors, particularly of the Pianaro system SCNCr consisting in 98.9%SnO(2)+1%CoO+0.05%Nb(2)O(5)+0.05%Cr(2)O(3), all in mol%, have been seldom reported in the literature. A comparative study at low and high currents of the nonohmic behavior of SCNCr- and ZnO-based varistors (modified Matsuoka system) is proposed in this work. The SCNCr system showed higher nonlinearity coefficients in the whole range of measured current. The electrical breakdown field (E(b)) was twice as high for the SCNCr system (5400 V/cm) than for the ZnO varistor (2600 V/cm) due to a smaller average grain size of the former (4.5 mu m) with respect to the latter (8.5 mu m). Nevertheless, we consider that another important factor responsible for the high E(b) in the SCNCr system is the great number of electrically active interfaces (85%) as determined with electrostatic force microscopy (EFM). It was also established that the SCNCr system might be produced in disks of smaller dimensions than that of commercial ZnO-based product, with a 5.0 cm(-1) minimal area-volume (A/V) ratio. The SCNCr reached the saturation current in a short time because of the high resistivity of the grains, which is five times higher than that of the grains in ZnO-based varistors.
Resumo:
In this work, the persistent luminescence mechanisms of Tb3+ (in CdSiO3) and Eu2+ (in BaAl2O4) based on solid experimental data are compared. The photoluminescence spectroscopy shows the different nature of the inter- and intraconfigurational transitions for Eu2+ and Tb3+, respectively. The electron is the charge carrier in both mechanisms, implying the presence of electron acceptor defects. The preliminary structural analysis shows a free space in CdSiO3 able to accommodate interstitial oxide ions needed by charge compensation during the initial preparation. The subsequent annealing removes this oxide leaving behind an electron trap. Despite the low band gap energy for CdSiO3, determined with synchrotron radiation UV-VUV excitation spectroscopy of Tb3+, the persistent luminescence from Tb3+ is observed only with UV irradiation. The need of high excitation energy is due to the position of F-7(6) level deep below the bottom of the conduction band, as determined with the 4f(8)-> 4f(7)5d(1) and the ligand-to-metal charge-transfer transitions. Finally, the persistent luminescence mechanisms are constructed and, despite the differences, the mechanisms for Tb3+ and Eu2+ proved to be rather similar. This similarity confirms the solidity of the interpretation of experimental data for the Eu2+ doped persistent luminescence materials and encourages the use of similar models for other persistent luminescence materials. (C) 2012 Optical Society of America
Resumo:
We have shown the possibility of operation by the piezooptical response of PbO-GeO2 glasses doped with rare earth ions and silver nanoparticles by illumination of double frequency CO2 nanosecond laser. Substantial influence of thermoannealing on the output photoinduced elastooptical susceptibilities was established. The effect is very sensitive to temperature and to the corresponding tensor components. The effect of thermoannealing leads to enhanced long-range ordering with the occurrence of corresponding trapping levels within the forbidden gaps. The discovered effects may be used for creation of low-temperature IR laser triggers.
Resumo:
Transcranial magnetic stimulation (TMS) is a promising method for both investigation and therapeutic treatment of psychiatric and neurologic disorders and, more recently, for brain mapping. This study describes the application of navigated TMS for motor cortex mapping in patients with a brain tumor located close to the precentral gyrus. Materials and methods: In this prospective study, six patients with low-grade gliomas in or near the precentral gyrus underwent TMS, and their motor responses were correlated to locations in the cortex around the lesion, generating a functional map overlaid on three-dimensional magnetic resonance imaging (MRI) scans of the brain. To determine the accuracy of this new method, we compared TMS mapping with the gold standard mapping with direct cortical electrical stimulation in surgery. The same navigation system and TMS-generated map were used during the surgical resection procedure. Results: The motor cortex could be clearly mapped using both methods. The locations corresponding to the hand and forearm, found during intraoperative mapping, showed a close spatial relationship to the homotopic areas identified by TMS mapping. The mean distance between TMS and direct cortical electrical stimulation (DES) was 4.16 +/- 1.02 mm (range: 2.56-5.27 mm). Conclusion: Preoperative mapping of the motor cortex with navigated TMS prior to brain tumor resection is a useful presurgical planning tool with good accuracy.
Resumo:
The aim of this study was to determine the influence of thickness and aging on the intrinsic fluorescence of sealing materials and their ability to block fluorescence from the underlying surface as assessed using a laser fluorescence device. Cavities of 0.5 mm and 1 mm depth were drilled into acrylic boards which were placed over two surfaces with different fluorescence properties: a low-fluorescence surface, to assess the intrinsic fluorescence of the sealing materials, and a high-fluorescence surface, to assess the fluorescence-blocking ability of the sealing materials. Ten cavities of each depth were filled with different sealing materials: Adper Scotchbond Multi-Purpose, Adper Single Bond 2, FluroShield, Conseal f and UltraSeal XT Plus. Fluorescence was measured with a DIAGNOdent pen at five different time points: empty cavity, after polymerization, and 1 day, 1 week and 1 month after filling. The individual values after polymerization, as well as the area under the curve for the different periods were submitted to ANOVA and the Tukey test (p < 0.05). At 0.5 mm, Scotchbond, FluroShield and UltraSeal showed insignificant changes in intrinsic fluorescence with aging and lower fluorescence after polymerization than Single Bond and Conseal. At 1 mm, Scotchbond and FluroShield showed the lowest intrinsic fluorescence, but only Scotchbond showed no chagnes in fluorescence with aging. At both depths, Scotchbond blocked significantly less fluorescence. All sealing materials blocked more fluorescence when applied to a depth of 1 mm. At 0.5 mm, fissure sealants blocked more fluorescence than adhesives, and did not show significant changes with aging. Scotchbond had the least affect on the fluorescence from the underlying surface and would probably have the least affect on the monitoring of sealed dental caries by laser fluorescence.
Resumo:
The preparation of nanometer-sized structures of zinc oxide (ZnO) from zinc acetate and urea as raw materials was performed using conventional water bath heating and a microwave hydrothermal (MH) method in an aqueous solution. The oxide formation is controlled by decomposition of the added urea in the sealed autoclave. The influence of urea and the synthesis method on the final product formation are discussed. Broadband photoluminescence (PL) behavior in visible-range spectra was observed with a maximum peak centered in the green region which was attributed to different defects and the structural changes involved with ZnO crystals which were produced during the nucleation process.
Resumo:
Low liquid-solid ratio (LSR) can be used to obtain high-content xylo-oligosaccharide (XOS) spend liquor by hot water pretreatment. Developing a technology based on low LSR results in more efficient water usage in the system and thus in lower capital and operating costs. Xylans from xylan rich agro-industrial waste are abundant hemicellulosic polymers with enormous potential for industrial applications. Currently, freeze-dried xylo-oligosaccharides are used as bio-based polymers and hydrolysates containing high xylose contents are converted to several chemical products. In this study, sugarcane bagasse was treated with water at low LSRs and mild temperatures in order to assess the effects of varying the pretreatment conditions on the xylo-oligosaccharide and xylose concentrations, and use a central composite experimental design to optimize the process parameters. The pretreatments were performed in the ranges temperature: 143.3-176.7 degrees C, time: 20-70 min and LSR: 1 : 1 to 11 : 1 (g g(-1)). The maximum concentrations of xylose and xylan were 13.76 and 36.18 g L-1 (equivalent to 48.29 g L-1 of xylan), respectively, which were achieved by treating bagasse at 170 degrees C for 60 min, with LSR of 3 g g(-1). The amount of xylan removed under these conditions was almost 57%. The soluble xylan consisted mainly of xylo-oligosaccharides (74 wt% of the identified compound in the spent liquor).
Resumo:
Objective: The objective of this study was to analyze the bacterial morphology by atomic force microscopy (AFM) after the application of low-level laser therapy (LLLT) in in vitro culture of Staphylococcus aureus ATCC 29213. Background data: Infections caused by S. aureus are among the highest occurring in hospitals and can often colonize pressure ulcers. LLLT is among the methods used to accelerate the healing of ulcers. However, there is no consensus on its effect on bacteria. Materials and methods: After being cultivated and seeded, the cultures were irradiated using wavelengths of 660, 830, and 904 nm at fluences of 0, 1, 2, 3, 4, 5, and 16 J/cm(2). Viable cells of S. aureus strain were counted after 24 h incubation. To analyze the occurrence of morphological changes, the topographical measurement of bacterial cells was analyzed using the AFM. Results: The overall assessment revealed that the laser irradiation reduced the S. aureus growth using 830 and 904 nm wavelengths; the latter with the greatest inhibition of the colony-forming units (CFU/mL) (331.1 +/- 38.19 and 137.38 +/- 21.72). Specifically with 660 nm, the statistical difference occurred only at a fluence of 3 J/cm(2). Topographical analysis showed small changes in morphological conformity of the samples tested. Conclusions: LLLT reduced the growth of S. aureus with 830 and 904 nm wavelengths, particularly with 904 nm at a fluence of 3 J/cm(2), where the greatest topographical changes of the cell structure occurred.
Resumo:
The purpose of this study is to present a position based tetrahedral finite element method of any order to accurately predict the mechanical behavior of solids constituted by functionally graded elastic materials and subjected to large displacements. The application of high-order elements makes it possible to overcome the volumetric and shear locking that appears in usual homogeneous isotropic situations or even in non-homogeneous cases developing small or large displacements. The use of parallel processing to improve the computational efficiency, allows employing high-order elements instead of low-order ones with reduced integration techniques or strain enhancements. The Green-Lagrange strain is adopted and the constitutive relation is the functionally graded Saint Venant-Kirchhoff law. The equilibrium is achieved by the minimum total potential energy principle. Examples of large displacement problems are presented and results confirm the locking free behavior of high-order elements for non-homogeneous materials. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We have performed an ab initio theoretical investigation of substitutional Mn(Zn) atoms in planar structures of ZnO, viz., monolayer [(ZnO)(1)] and bilayer [(ZnO)(2)] systems. Due to the 2-D quantum confinement effects, in those Mn -doped (ZnO)(1) and (ZnO)(2) structures, the antiferromagnetic (AFM) coupling between (nearest neighbor) Mn(Zn) impurities have been strengthened when compared with the one in ZnO bulk systems. On the other hand, we find that the magnetic state of these systems can be tuned from AFM to FM by adding holes, which can be supplied by a p-type doping or even photoionization processes. Whereas, upon addition of electrons (n-type doping), the system keeps its AFM configuration.