973 resultados para Locally Advanced Head
Resumo:
In microelectronics, the increase in complexity and the reduction of devices dimensions make essential the development of new characterization tools and methodologies. Indeed advanced characterization methods with very high spatial resolution are needed to analyze the redistribution at the nanoscale in devices and interconnections. The atom probe tomography has become an essential analysis to study materials at the nanometer scale. This instrument is the only analytical microscope capable to produce 3D maps of the distribution of the chemical species with an atomic resolution inside a material. This technique has benefit from several instrumental improvements during last years. In particular, the use of laser for the analysis of semiconductors and insulating materials offers new perspectives for characterization. The capability of APT to map out elements at the atomic scale with high sensitivity in devices meets the characterization requirements of semiconductor devices such as the determination of elemental distributions for each device region. In this paper, several examples will show how APT can be used to characterize and understand materials and process for advanced metallization. The possibilities and performances of APT (chemical analysis of all the elements, atomic resolution, planes determination, crystallographic information...) will be described as well as some of its limitations (sample preparation, complex evaporation, detection limit, ...). The examples illustrate different aspect of metallization: dopant profiling and clustering, metallic impurities segregation on dislocation, silicide formation and alloying, high K/metal gate optimization, SiGe quantum dots, as well as analysis of transistors and nanowires. © 2013 Elsevier B.V. All rights reserved.
Resumo:
The spawning areas and early development of long spiky-head carp, Luciobrama macrocephalus (Lacepede), an endemic fish species in China, were investigated in the Yangtze River and Pearl River of central and southeastern China between 1961 and 1993. The potamodromous fish migrated upstream to spawn between May and July as the floodwater began to rise. The water-hardened eggs drifted down the river, and the embryos and larvae developed in the course of drifting. The spawning areas of the fish were widely found in the upper and middle main channels and large tributaries. Two large dams (Gezhouba dam and Danjiangkou dam) did not significantly impact on the reproduction of the fish. Fifty stages of the early development from one cell to the juvenile with fully formed fins were observed and characterized pictorially. The larvae of long spiky-head carp could be distinguished from the larvae of other co-occurring species by counting the number of somites and comparing the proportion of sizes of eye to otic capsule.
Resumo:
In this review, the potential of mode-locked lasers based on advanced quantum-dot ( QD) active media to generate short optical pulses is analysed. A comprehensive review of experimental and theoretical work on related aspects is provided, including monolithic-cavity mode-locked QD lasers and external-cavity mode-locked QD lasers, as well as mode-locked solid-state and fibre lasers based on QD semiconductor saturable absorber mirrors. Performance comparisons are made for state-of-the-art experiments. Various methods for improving important characteristics of mode-locked pulses such as pulse duration, repetition rate, pulse power, and timing jitter through optimization of device design parameters or mode-locking methods are addressed. In addition, gain switching and self-pulsation of QD lasers are also briefly reviewed, concluding with the summary and prospects.
Resumo:
Resumo:
The interpenetrating network structure provides an interesting avenue to novel materials. Locally resonant phononic crystal (LRPC) exhibits excellent sound attenuation performance based on the periodical arrangement of sound wave scatters. Combining the LRPC concept and interpenetrating network glassy structure, this paper has developed a new material which can achieve a wide band underwater strong acoustic absorption. Underwater absorption coefficients of different samples were measured by the pulse tube. Measurement results show that the new material possesses excellent underwater acoustic effects in a wide frequency range. Moreover, in order to investigate impacts of locally resonant units, some defects are introduced into the sample. The experimental result and the theoretical calculation both show that locally resonant units being connected to a network structure play an important role in achieving a wide band strong acoustic absorption.
Resumo:
Superconducting electron cyclotron resonance (ECR) ion source with advanced design in Lanzhou (SECRAL) is a next generation ECR ion source and aims for developing a very compact superconducting ECR ion source with a structure and high performances for highly charged ion-beam production. The ion source was designed to be operated at 18 GHz at initial operation and finally will be extended to 28 GHz. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. At full excitation, this magnet assembly can produce peak mirror fields on the axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. What is different from the traditional design, such as LBNL VENUS and LNS SERSE, is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. SECRAL may open the way for building a compact and high-performance 18-28 GHz superconducting ECR ion source. Very preliminary commissioning results are promising. Detailed design, construction issues and very preliminary test results of the ion source at 18 GHz are presented.
New development of advanced superconducting electron cyclotron resonance ion source SECRAL (invited)
Resumo:
Superconducting electron cyclotron resonance ion source with advance design in Lanzhou (SECRAL) is an 18-28 GHz fully superconducting electron cyclotron resonance (ECR) ion source dedicated for highly charged heavy ion beam production. SECRAL, with an innovative superconducting magnet structure of solenoid-inside-sextupole and at lower frequency and lower rf power operation, may open a new way for developing compact and reliable high performance superconducting ECR ion source. One of the recent highlights achieved at SECRAL is that some new record beam currents for very high charge states were produced by 18 GHz or 18+14.5 GHz double frequency heating, such as 1 e mu A of Xe-129(43+), 22 e mu A of Bi-209(41+), and 1.5 e mu A of Bi-209(50+). To further enhance the performance of SECRAL, a 24 GHz/7 kW gyrotron microwave generator was installed and SECRAL was tested at 24 GHz. Some promising and exciting results at 24 GHz with new record highly charged ion beam intensities were produced, such as 455 e mu A of Xe-129(27+) and 152 e mu A of Xe-129(30+), although the commissioning time was limited within 3-4 weeks and rf power only 3-4 kW. Bremsstrahlung measurements at 24 GHz show that x-ray is much stronger with higher rf frequency, higher rf power. and higher minimum mirror magnetic field (minimum B). Preliminary emittance measurements indicate that SECRAL emittance at 24 GHz is slightly higher that at 18 GHz. SECRAL has been put into routine operation at 18 GHz for heavy ion research facility in Lanzhou (HIRFL) accelerator complex since May 2007. The total operation beam time from SECRAL for HIRFL accelerator has been more than 2000 h, and Xe-129(27+), Kr-78(19+), Bi-209(31+), and Ni-58(19+) beams were delivered. All of these new developments, the latest results, and long-term operation for the accelerator have again demonstrated that SECRAL is one of the best in the performance of ECR ion source for highly charged heavy ion beam production. Finally the future development of SECRAL will be presented.
Resumo:
Composite membranes based on Sulfonated poly(ether ether ketone) (SPEEK) and sulfonated organically modified Si-SBA-15 (S-SBA-15) were investigated with the purpose of increasing the proton conductivity. The novelty of the composite membranes was attributed to two special structures and different ion exchange capacities (IEC) of S-SBA-15 fillers, which were embedded in membranes. The typical hexagonal channels array of S-SBA-15 was confirmed by XRD and TEM. The regular vermiculate and amorphous structures of the inorganic fillers were proved by SEM. Composite membranes were prepared through common solvent casting method. SEM images indicated that the inorganic filler with regular structure dispersed homogeneously in the composite membranes, but the amorphous filler caused an agglomeration phenomenon at the same loading content.
Resumo:
In this contribution, we for the first time report the synthesis of raspberry-like hierarchical Au/Pt nanoparticle (NP) assembling hollow spheres (RHAHS) with pore structure and complex morphology through one in situ sacrificial template approach without any post-treatment procedure. This method has some clear advantages including simplicity, quickness, high quality, good reproducibility, and no need of a complex post-treatment process (removing templating). Furthermore, the present method could be extended to other metal-based NP assembling hollow spheres. Most importantly, the as-prepared RHAHS exhibited excellent electrocatalytic activity for oxygen reduction reaction (ORR). For instance, the present RHAHS-modified electrode exhibited more positive potential (the half-wave potential at about 0.6 V), higher specific activity, and higher mass activity for ORR than that of commercial platinum black (CPB). Rotating ring-disk electrode (RRDE) voltarnmetry demonstrated that the RHAHS-modified electrode could almost catalyze a four-electron reduction of O-2 to H2O in a 0.5 M air-saturated H2SO4 solution.
Resumo:
Single crystals of head-to-tail poly(3-hexylthiophene)s have been grown through the method of isothermal solution crystallization. Electron diffraction in combination with powder X-ray diffraction revealed the crystal structure, a = 1.52 nm, b = 3.36 nm, c = 1.56 nm and alpha = beta = gamma = 90 degrees.
Resumo:
Biosensors have experienced rapid, extensive development. To maintain the bioactivity of biomolecules and to give the electrochemical output signal required, appropriate bioimmobilization matrices for biomolecules are critical.In this review, we describe some advanced membrane materials (including hydrogels, sol-gel-derived organic-inorganic composites and lipid membranes), introduce electrochemical biosensors based on bioimmobilization materials and describe their performance.Biosensors operating in extreme conditions and displaying direct electron transfer with electrodes based on these advanced membrane materials are attractive. Recent developments in nanomaterials include biosensors, so we emphasize the intersection of nanomaterials with advanced membrane materials in biosensors.
Resumo:
Recent research carried out at the Chinese Institute of Applied Chemistry has contributed significantly to the understanding of the radiation chemistry of polymers. High energy radiation has been successfully used to cross-link fluoropolymers and polyimides. Here chain flexibility has been shown to play an important role, and T-type structures were found to exist in the cross-linked fluoropolymers. A modified Charlesby-Pinner equation, based upon the importance of chain flexibility, was developed to account for the sol-radiation dose relationship in systems of this type. An XPS method has been developed to measure the cross-linking yields in aromatic polymers and fluoropolymers, based upon the dose dependence of the aromatic shake-up peaks and the F/C ratios, respectively. Methods for radiation cross-linking degrading polymers in polymer blends have also been developed, as have methods for improving the radiation resistance of polymers through radiation cross-linking.