873 resultados para Learning processes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-leadership is a concept from the organisational and management literature broadly combining processes of self-goal setting, self-regulation and self-motivation. Research has typically focused on the impact of self-leadership on work performance outcomes, with little attention to potential benefits for learning and development. In this paper, we employ a longitudinal design to examine the association of a number of processes of self-leadership with higher educational attainment in a sample of business students (N = 150). Self-reported use of strategies related to behavioural, cognitive and motivational aspects of self-leadership were measured in the first semester of the academic year, and correlated with end-of year grade point average. We found that in particular, self-goal setting, pro-active goal-related behaviour, behaviour regulation and direction, motivational awareness, and optimism were all significant predictors of educational attainment. We discuss implications for educational research and for teachers and tutors in practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this article is to present the results obtained from a questionnaire applied to Costa Rican high school students, in order to know their perspectives about geometry teaching and learning. The results show that geometry classes in high school education have been based on a traditional system of teaching, where the teacher presents the theory; he presents examples and exercises that should be solved by students, which emphasize in the application and memorization of formulas. As a consequence, visualization processes, argumentation and justification don’t have a preponderant role. Geometry is presented to students like a group of definitions, formulas, and theorems completely far from their reality and, where the examples and exercises don’t possess any relationship with their context. As a result, it is considered not important, because it is not applicable to real life situations. Also, the students consider that, to be successful in geometry, it is necessary to know how to use the calculator, to carry out calculations, to have capacity to memorize definitions, formulas and theorems, to possess capacity to understand the geometric drawings and to carry out clever exercises to develop a practical ability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bio-pedagogy is built on praxis, i.e. the interrelationship between reflection and innovative action where these two merge in the construction of senses to generate knowledge. Then, the following question arises: How is teaching understood? How can practice be renovated from the action-reflection-action in a recurring manner and in life itself? A way to search for those answers is the systematization of experiences –a modality of qualitative research. It promotes the transformation of a common practice, based on knowledge building by holistic approaches to the educational process complexity. The systematization of bio-pedagogical experiences involves self-organization, joy, uncertainty and passion; it respects freedom and autonomy, and generates relational spaces, which promote creative processes in learning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reinforcement Learning is an increasingly popular area of Artificial Intelligence. The applications of this learning paradigm are many, but its application in mobile computing is in its infancy. This study aims to provide an overview of current Reinforcement Learning applications on mobile devices, as well as to introduce a new framework for iOS devices: Swift-RL Lib. This new Swift package allows developers to easily support and integrate two of the most common RL algorithms, Q-Learning and Deep Q-Network, in a fully customizable environment. All processes are performed on the device, without any need for remote computation. The framework was tested in different settings and evaluated through several use cases. Through an in-depth performance analysis, we show that the platform provides effective and efficient support for Reinforcement Learning for mobile applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interactive experiences are rapidly becoming popular via the surge of ‘escape rooms’; part game and part theatre, the ‘escape’ experience is exploding globally, having gone from zero offered at the outset of 2010 to at least 2800 different experiences available worldwide today. CrashEd is an interactive learning experience that parallels many of the attractions of an escape room – it incorporates a staged, realistic ‘crime scene’ and invites participants to work together to gather forensic evidence and question a witness in order to solve a crime, all whilst competing against a ticking clock. An animation can enhance reality and engage with cognitive processes to help learning; in CrashEd, it is the last piece of the jigsaw that consolidates the students’ incremental acquisition of knowledge to tie together the pieces of evidence, identify a suspect and ultimately solve the crime. This article presents the background to CrashEd and an overview of how a timely placed animation at the end of an educational experience can enhance learning. The lessons learned, from delivering bespoke versions of the experience to different demographic groups, are discussed. The article will consider the successes and challenges raised by the collaborative project, future developments and potential wider implications of the development of CrashEd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article explores academics’ writing practices, focusing on the ways in which they use digital platforms in their processes of collaborative learning. It draws on interview data from a research project that has involved working closely with academics across different disciplines and institutions to explore their writing practices, understanding academic literacies as situated social practices. The article outlines the characteristics of academics’ ongoing professional learning, demonstrating the importance of collaborations on specific projects in generating learning in relation to using digital platforms and for sharing and collaborating on scholarly writing. A very wide range of digital platforms have been identified by these academics, enabling new kinds of collaboration across time and space on writing and research; but challenges around online learning are also identified, particularly the dangers of engaging in learning in public, the pressures of ‘always-on’-ness and the different values systems around publishing in different forums.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biology is now a “Big Data Science” thanks to technological advancements allowing the characterization of the whole macromolecular content of a cell or a collection of cells. This opens interesting perspectives, but only a small portion of this data may be experimentally characterized. From this derives the demand of accurate and efficient computational tools for automatic annotation of biological molecules. This is even more true when dealing with membrane proteins, on which my research project is focused leading to the development of two machine learning-based methods: BetAware-Deep and SVMyr. BetAware-Deep is a tool for the detection and topology prediction of transmembrane beta-barrel proteins found in Gram-negative bacteria. These proteins are involved in many biological processes and primary candidates as drug targets. BetAware-Deep exploits the combination of a deep learning framework (bidirectional long short-term memory) and a probabilistic graphical model (grammatical-restrained hidden conditional random field). Moreover, it introduced a modified formulation of the hydrophobic moment, designed to include the evolutionary information. BetAware-Deep outperformed all the available methods in topology prediction and reported high scores in the detection task. Glycine myristoylation in Eukaryotes is the binding of a myristic acid on an N-terminal glycine. SVMyr is a fast method based on support vector machines designed to predict this modification in dataset of proteomic scale. It uses as input octapeptides and exploits computational scores derived from experimental examples and mean physicochemical features. SVMyr outperformed all the available methods for co-translational myristoylation prediction. In addition, it allows (as a unique feature) the prediction of post-translational myristoylation. Both the tools here described are designed having in mind best practices for the development of machine learning-based tools outlined by the bioinformatics community. Moreover, they are made available via user-friendly web servers. All this make them valuable tools for filling the gap between sequential and annotated data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the framework of industrial problems, the application of Constrained Optimization is known to have overall very good modeling capability and performance and stands as one of the most powerful, explored, and exploited tool to address prescriptive tasks. The number of applications is huge, ranging from logistics to transportation, packing, production, telecommunication, scheduling, and much more. The main reason behind this success is to be found in the remarkable effort put in the last decades by the OR community to develop realistic models and devise exact or approximate methods to solve the largest variety of constrained or combinatorial optimization problems, together with the spread of computational power and easily accessible OR software and resources. On the other hand, the technological advancements lead to a data wealth never seen before and increasingly push towards methods able to extract useful knowledge from them; among the data-driven methods, Machine Learning techniques appear to be one of the most promising, thanks to its successes in domains like Image Recognition, Natural Language Processes and playing games, but also the amount of research involved. The purpose of the present research is to study how Machine Learning and Constrained Optimization can be used together to achieve systems able to leverage the strengths of both methods: this would open the way to exploiting decades of research on resolution techniques for COPs and constructing models able to adapt and learn from available data. In the first part of this work, we survey the existing techniques and classify them according to the type, method, or scope of the integration; subsequently, we introduce a novel and general algorithm devised to inject knowledge into learning models through constraints, Moving Target. In the last part of the thesis, two applications stemming from real-world projects and done in collaboration with Optit will be presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of random probability measures is a lively research topic that has attracted interest from different fields in recent years. In this thesis, we consider random probability measures in the context of Bayesian nonparametrics, where the law of a random probability measure is used as prior distribution, and in the context of distributional data analysis, where the goal is to perform inference given avsample from the law of a random probability measure. The contributions contained in this thesis can be subdivided according to three different topics: (i) the use of almost surely discrete repulsive random measures (i.e., whose support points are well separated) for Bayesian model-based clustering, (ii) the proposal of new laws for collections of random probability measures for Bayesian density estimation of partially exchangeable data subdivided into different groups, and (iii) the study of principal component analysis and regression models for probability distributions seen as elements of the 2-Wasserstein space. Specifically, for point (i) above we propose an efficient Markov chain Monte Carlo algorithm for posterior inference, which sidesteps the need of split-merge reversible jump moves typically associated with poor performance, we propose a model for clustering high-dimensional data by introducing a novel class of anisotropic determinantal point processes, and study the distributional properties of the repulsive measures, shedding light on important theoretical results which enable more principled prior elicitation and more efficient posterior simulation algorithms. For point (ii) above, we consider several models suitable for clustering homogeneous populations, inducing spatial dependence across groups of data, extracting the characteristic traits common to all the data-groups, and propose a novel vector autoregressive model to study of growth curves of Singaporean kids. Finally, for point (iii), we propose a novel class of projected statistical methods for distributional data analysis for measures on the real line and on the unit-circle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Creativity seems mysterious; when we experience a creative spark, it is difficult to explain how we got that idea, and we often recall notions like ``inspiration" and ``intuition" when we try to explain the phenomenon. The fact that we are clueless about how a creative idea manifests itself does not necessarily imply that a scientific explanation cannot exist. We are unaware of how we perform certain tasks, such as biking or language understanding, but we have more and more computational techniques that can replicate and hopefully explain such activities. We should understand that every creative act is a fruit of experience, society, and culture. Nothing comes from nothing. Novel ideas are never utterly new; they stem from representations that are already in mind. Creativity involves establishing new relations between pieces of information we had already: then, the greater the knowledge, the greater the possibility of finding uncommon connections, and the more the potential to be creative. In this vein, a beneficial approach to a better understanding of creativity must include computational or mechanistic accounts of such inner procedures and the formation of the knowledge that enables such connections. That is the aim of Computational Creativity: to develop computational systems for emulating and studying creativity. Hence, this dissertation focuses on these two related research areas: discussing computational mechanisms to generate creative artifacts and describing some implicit cognitive processes that can form the basis for creative thoughts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Service-learning in higher education is gaining attention as a reliable tool to support students’ learning and fulfil the mission of higher education institutions (HEIs). This dissertation addresses existing gaps in the literature by examining the effects and perspectives of service-learning in HEIs through three studies. The first study compares the effects of a voluntary semester-long service-learning course with traditional courses. A survey completed by 110 students before and after the lectures found no significant group differences in the psychosocial variables under inspection. Nevertheless, service-learning students showed higher scores concerning the quality of participation. Factors such as students’ perception of competence, duration of service-learning, and self-reported measures may have influenced the results. The second study explores the under-researched perspective of community partners in higher education and European settings. Twelve semi-structured interviews were conducted with community partners from various community organisations across Europe. The results highlight positive effects on community members and organisations, intrinsic motivations, organisational empowerment, different forms of reciprocity, the co-educational role of community partners, and the significant role of a sense of community and belonging. The third study focuses on faculty perspectives on service-learning in the European context. Twenty-two semi-structured interviews were conducted in 14 European countries. The findings confirm the transformative impact of service-learning on the community, students, teachers, and HEIs, emphasising the importance of motivation and institutionalisation processes in sustaining engaged scholarship. The study also identifies the relevance of the community experience, sense of community, and community responsibility with the service-learning experience; relatedness is proposed as the fifth pillar of service-learning. Overall, this dissertation provides new insights into the effects and perspectives of service-learning in higher education. It integrates the 4Rs model with the addition of relatedness, guiding the theoretical and practical implications of the findings. The dissertation also suggests limitations and areas for further research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Machine Learning makes computers capable of performing tasks typically requiring human intelligence. A domain where it is having a considerable impact is the life sciences, allowing to devise new biological analysis protocols, develop patients’ treatments efficiently and faster, and reduce healthcare costs. This Thesis work presents new Machine Learning methods and pipelines for the life sciences focusing on the unsupervised field. At a methodological level, two methods are presented. The first is an “Ab Initio Local Principal Path” and it is a revised and improved version of a pre-existing algorithm in the manifold learning realm. The second contribution is an improvement over the Import Vector Domain Description (one-class learning) through the Kullback-Leibler divergence. It hybridizes kernel methods to Deep Learning obtaining a scalable solution, an improved probabilistic model, and state-of-the-art performances. Both methods are tested through several experiments, with a central focus on their relevance in life sciences. Results show that they improve the performances achieved by their previous versions. At the applicative level, two pipelines are presented. The first one is for the analysis of RNA-Seq datasets, both transcriptomic and single-cell data, and is aimed at identifying genes that may be involved in biological processes (e.g., the transition of tissues from normal to cancer). In this project, an R package is released on CRAN to make the pipeline accessible to the bioinformatic Community through high-level APIs. The second pipeline is in the drug discovery domain and is useful for identifying druggable pockets, namely regions of a protein with a high probability of accepting a small molecule (a drug). Both these pipelines achieve remarkable results. Lastly, a detour application is developed to identify the strengths/limitations of the “Principal Path” algorithm by analyzing Convolutional Neural Networks induced vector spaces. This application is conducted in the music and visual arts domains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integration of distributed and ubiquitous intelligence has emerged over the last years as the mainspring of transformative advancements in mobile radio networks. As we approach the era of “mobile for intelligence”, next-generation wireless networks are poised to undergo significant and profound changes. Notably, the overarching challenge that lies ahead is the development and implementation of integrated communication and learning mechanisms that will enable the realization of autonomous mobile radio networks. The ultimate pursuit of eliminating human-in-the-loop constitutes an ambitious challenge, necessitating a meticulous delineation of the fundamental characteristics that artificial intelligence (AI) should possess to effectively achieve this objective. This challenge represents a paradigm shift in the design, deployment, and operation of wireless networks, where conventional, static configurations give way to dynamic, adaptive, and AI-native systems capable of self-optimization, self-sustainment, and learning. This thesis aims to provide a comprehensive exploration of the fundamental principles and practical approaches required to create autonomous mobile radio networks that seamlessly integrate communication and learning components. The first chapter of this thesis introduces the notion of Predictive Quality of Service (PQoS) and adaptive optimization and expands upon the challenge to achieve adaptable, reliable, and robust network performance in dynamic and ever-changing environments. The subsequent chapter delves into the revolutionary role of generative AI in shaping next-generation autonomous networks. This chapter emphasizes achieving trustworthy uncertainty-aware generation processes with the use of approximate Bayesian methods and aims to show how generative AI can improve generalization while reducing data communication costs. Finally, the thesis embarks on the topic of distributed learning over wireless networks. Distributed learning and its declinations, including multi-agent reinforcement learning systems and federated learning, have the potential to meet the scalability demands of modern data-driven applications, enabling efficient and collaborative model training across dynamic scenarios while ensuring data privacy and reducing communication overhead.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vision systems are powerful tools playing an increasingly important role in modern industry, to detect errors and maintain product standards. With the enlarged availability of affordable industrial cameras, computer vision algorithms have been increasingly applied in industrial manufacturing processes monitoring. Until a few years ago, industrial computer vision applications relied only on ad-hoc algorithms designed for the specific object and acquisition setup being monitored, with a strong focus on co-designing the acquisition and processing pipeline. Deep learning has overcome these limits providing greater flexibility and faster re-configuration. In this work, the process to be inspected consists in vials’ pack formation entering a freeze-dryer, which is a common scenario in pharmaceutical active ingredient packaging lines. To ensure that the machine produces proper packs, a vision system is installed at the entrance of the freeze-dryer to detect eventual anomalies with execution times compatible with the production specifications. Other constraints come from sterility and safety standards required in pharmaceutical manufacturing. This work presents an overview about the production line, with particular focus on the vision system designed, and about all trials conducted to obtain the final performance. Transfer learning, alleviating the requirement for a large number of training data, combined with data augmentation methods, consisting in the generation of synthetic images, were used to effectively increase the performances while reducing the cost of data acquisition and annotation. The proposed vision algorithm is composed by two main subtasks, designed respectively to vials counting and discrepancy detection. The first one was trained on more than 23k vials (about 300 images) and tested on 5k more (about 75 images), whereas 60 training images and 52 testing images were used for the second one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alpha oscillatory activity has long been associated with perceptual and cognitive processes related to attention control. The aim of this study is to explore the task-dependent role of alpha frequency in a lateralized visuo-spatial detection task. Specifically, the thesis focuses on consolidating the scientific literature's knowledge about the role of alpha frequency in perceptual accuracy, and deepening the understanding of what determines trial-by-trial fluctuations of alpha parameters and how these fluctuations influence overall task performance. The hypotheses, confirmed empirically, were that different implicit strategies are put in place based on the task context, in order to maximize performance with optimal resource distribution (namely alpha frequency, associated positively with performance): “Lateralization” of the attentive resources towards one hemifield should be associated with higher alpha frequency difference between contralateral and ipsilateral hemisphere; “Distribution” of the attentive resources across hemifields should be associated with lower alpha frequency difference between hemispheres; These strategies, used by the participants according to their brain capabilities, have proven themselves adaptive or maladaptive depending on the different tasks to which they have been set: "Distribution" of the attentive resources seemed to be the best strategy when the distribution probability between hemifields was balanced: i.e. the neutral condition task. "Lateralization" of the attentive resources seemed to be more effective when the distribution probability between hemifields was biased towards one hemifield: i.e., the biased condition task.