972 resultados para Laser induced poling


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Glasses containing metallic nanoparticles are promising materials for technological applications in optics and photonics. Although several methods are available to generate nanoparticles in glass, only femtosecond lasers allow controlling it three-dimensionally. In this direction, the present work investigates the generation of copper nanoparticles on the surface and in the bulk of a borosilicate glass by fs-laser irradiation. We verified the formation of copper nanoparticles, after heat treatment, by UV-Vis absorption, transmission electron microscopy and electron diffraction. A preferential growth of copper nanoparticles was observed in the bottom of the irradiated region, which was attributed to self-focusing in the glass. (c) 2012 Optical Society of America

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Muscle strains are among the most prevalent causes for athletes absence from sport activities. Low-level laser therapy (LLLT) has recently emerged as a potential contender to nonsteroidal anti-inflammatory drugs in muscle strain treatment. In this work we investigated effects of LLLT and diclofenac on functional outcomes in the acute stage after muscle strain injury in rats. Muscle strain was induced by overloading the tibialis anterior muscle of rats during anesthesia. The injured groups received either no treatment, or a single treatment with diclofenac 30 min prior to injury, or LLLT (810 nm, 100 mW) with doses of 1, 3, 6 or 9 J, at 1 h after injury. Functional outcome measures included a walking index and assessment of electrically induced muscle performance. All treatments (except 9 J LLLT) significantly improved the walking index 12 h postinjury compared with the untreated group. The 3 J group also showed a significantly better walking index than the drug group. All treatments significantly improved muscle performance at 6 and 12 h. LLLT dose of 3 J was as effective as the pharmacological agent in improving functional outcomes in the early phase after a muscle strain injury in rats.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

NSAIDs are widely prescribed and used over the years to treat tendon injuries despite its well-known long-term side effects. In the last years several animal and human trials have shown that low-level laser therapy (LLLT) presents modulatory effects on inflammatory markers, however the mechanisms involved are not fully understood. The aim of this study was to evaluate the short-term effects of LLLT or sodium diclofenac treatments on biochemical markers and biomechanical properties of inflamed Achilles tendons. Wistar rats Achilles tendons (n?=?6/group) were injected with saline (control) or collagenase at peritendinous area of Achilles tendons. After 1?h animals were treated with two different doses of LLLT (810?nm, 1 and 3?J) at the sites of the injections, or with intramuscular sodium diclofenac. Regarding biochemical analyses, LLLT significantly decreased (p?<?0.05) COX-2, TNF-a, MMP-3, MMP-9, and MMP-13 gene expression, as well as prostaglandin E2 (PGE2) production when compared to collagenase group. Interestingly, diclofenac treatment only decreased PGE2 levels. Biomechanical properties were preserved in the laser-treated groups when compared to collagenase and diclofenac groups. We conclude that LLLT was able to reduce tendon inflammation and to preserve tendon resistance and elasticity. (c) 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:19451951, 2012

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Calcium tantalite (CaTa2O6) single crystal fibers were obtained by the laser-heated pedestal growth method (LHPG). At room temperature, this material can present three polymorphic modifications. The rapid crystallization inherent to the LHPG method produced samples within the Pm3 space group, with some chemical disorder. In order to check for polymorphic-induced transformations, the CaTa2O6 fibers have been submitted to different thermal treatments and investigated by micro-Raman spectroscopy. For short annealing times (15 min) at 1200 °C, the cubic modification was maintained, though with an improved crystalline quality, as evidenced by the enhanced inelastic scattered intensity (by ca. 250%) and narrowing of Raman bands. The polarized Raman spectra respected very well the predicted symmetries and the selection rules for this cubic modification. On the other hand, long annealing times (24 h) at 1200 °C led to a complete (irreversible) polymorphic transformation. The Raman bands became still more intense (ca. 15 times larger than for the as-grown fibers), narrower, and several new modes appeared. Also, the spectra became unpolarized, demonstrating a polycrystalline nature of the transformed crystals. The observed Raman modes could be fully assigned to an orthorhombic modification of CaTa2O6 belonging to the Pnma space group.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Laser pulses are largely used for processing and analysis of materials and in particular for nano-particle synthesis. This paper addresses fundamentals of the generation of nano-materials following specific thermodynamic paths of the irradiated material. Computer simulations using the hydro code MULTI and the SESAME equation of state have been performed to follow the dynamics of a target initially heated by a short laser pulse over a distance comparable to the metal skin depth.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we report the experimental results obtained when an He-Ne laser beam crosses an MBBA homeotropic sandwich structure and is modulated by the influence of another laser beam, in our case an Ar+ laser, crossing through the same region. We extend some results previously reported by us1 2 concerning the influence of the ratio of the diameters of the laser beams on the modulation characteristics. A theoretical model, based on the one reported in Ref6 , shows good agreement with the experimental results. If the Ar+ laser is intensity chopped, the resulting He-Ne diffracted image is also intensity modulated. The highest frequency observed has been 500 p. p. s.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Outline: • Introduction • Numerical model SHOCKLAS© • Single LSP pulses • Overlapped LSP pulses • Discussion and Outlook

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Assessment of laser peening induced effects on Ti6Al4V by destructive and non-destructive techniques

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Laser peening has recently emerged as a useful technique to overcome detrimental effects associated to another well-known surface modification processes such as shot peening or grit blasting used in the biomedical field. It is worth to notice that besides the primary residual stress effect, thermally induced effects might also cause subtle surface and subsurface microstructural changes that might influence corrosion resistance. Moreover, since maximum loads use to occur at the surface, they could also play a critical role in the fatigue strength. In this work, plates of Ti-6Al-4V alloy of 7 mm in thickness were modified by laser peening without using a sacrificial outer layer. Irradiation by a Q-switched Nd-YAG laser (9.4 ns pulse length) working in fundamental harmonic at 2.8 J/pulse and with water as confining medium was used. Laser pulses with a 1.5 mm diameter at an equivalent overlapping density (EOD) of 5000 cm-2 were applied. Attempts to analyze the global induced effects after laser peening were addressed by using the contacting and non-contacting thermoelectric power (TEP) techniques. It was demonstrated that the thermoelectric method is entirely insensitive to surface topography while it is uniquely sensitive to subtle variations in thermoelectric properties, which are associated with the different material effects induced by different surface modification treatments. These results indicate that the stress-dependence of the thermoelectric power in metals produces sufficient contrast to detect and quantitatively characterize regions under compressive residual stress based on their thermoelectric power contrast with respect to the surrounding intact material. However, further research is needed to better separate residual stress effects from secondary material effects, especially in the case of low-conductivity engineering materials like titanium alloys.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A gain-switched laser transition, of a two-laser-transition cascade laser, that is driven by the adjacent laser transition which is Q-switched is demonstrated using a Ho3+ -doped fluoride fiber laser. Q-switching the 5|6 ? 5|7 transition at 3.002 µm produces stable gain-switched pulses from the 5|7 ? 5|8 transition at 2.074 µm; however, Q-switching the 5|7 ? 5|8 transition produced multiple gain switched pulses from the 5|6 ? 5|7 transition. The gain-switched pulses were measured to be of a similar duration to the Q-switched pulses suggesting that much shorter pulses of closer duration could be generated at pump power higher levels.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel biocompatible and biodegradable polymer, termed poly(Glycerol malate co-dodecanedioate) (PGMD), was prepared by thermal condensation method and used for fabrication of nanoparticles (NPs). PGMD NPs were prepared using the single oil emulsion technique and loaded with an imaging/hyperthermia agent (IR820) and a chemotherapeutic agent (doxorubicin, DOX). The size of the void PGMD NPs, IR820-PGMD NPs and DOX-IR820-PGMD NPs were approximately 90 nm, 110 nm, and 125 nm respectively. An acidic environment (pH=5.0) induced higher DOX and IR820 release compared to pH=7.4. DOX release was also enhanced by exposure to laser, which increased the temperature to 42°C. Cytotoxicity of DOX-IR820-PGMD NPs was comparable in MES-SA but was higher in Dx5 cells compared to free DOX plus IR820 (p<0.05). The combination of hyperthermia (HT) and chemotherapy improved cytotoxicity in both cell lines. We also explored the cellular response after rapid, short-term and low thermal dose (laser/Dye/NP) induced-heating, and compared it to slow, long-term and high thermal dose cell incubator heating by investigating the reactive oxygen species (ROS) level, hypoxia-inducible factor-1&agr; (HIF-1&agr;) and vascular endothelial growth factor (VEGF) expression. The cytotoxicity of IR820-PGMD NPs after laser/Dye/NP HT resulted in higher cancer cell killing compared to incubator HT. ROS level, HIF-1&agr; and VEGF expression were elevated under incubator HT, while maintained at the baseline level under the laser/Dye/NP HT. In vivo mouse studies showed that NP formulation significantly improved the plasma half-life of IR820 after tail vein injection. Significant lower IR820 content was observed in kidney in DOX-IR820-PGMD NP treatment as compared to free IR820 treatment in our biodistribution studies (p<0.05). In conclusion, both IR820-PGMD NPs and DOX-IR820-PGMD NPs were successfully developed and used for both imaging and therapeutic purposes. Rapid and short-term laser/Dye/NP HT, with a low thermal dose, did not up-regulate HIF-1&agr; and VEGF expression, whereas slow and long-term incubator HT, with a high thermal dose, can enhance expression of both HIF-1&agr; and VEGF.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrathin films of a poly(styrene)-block-poly(2-vinylpyrindine) diblock copolymer (PS-b-P2VP) and poly(styrene)-block-poly(4-vinylpyrindine) diblock copolymer (PS-b-P4VP) were used to form surface-induced nanopattern (SINPAT) on mica. Surface interaction controlled microphase separation led to the formation of chemically heterogeneous surface nanopatterns on dry ultrathin films. Two distinct nanopatterned surfaces, namely, wormlike and dotlike patterns, were used to investigate the influence of topography in the nanometer range on cell adhesion, proliferation, and migration. Atomic force microscopy was used to confirm that SINPAT was stable under cell culture conditions. Fibroblasts and mesenchymal progenitor cells were cultured on the nanopatterned surfaces. Phase contrast and confocal laser microscopy showed that fibroblasts and mesenchymal progenitor cells preferred the densely spaced wormlike patterns. Atomic force microscopy showed that the cells remodelled the extracellular matrix differently as they migrate over the two distinctly different nanopatterns

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of plasmonoscillations, induced by pulsed laserirradiation, on the DC tunnel current between islands in a discontinuous thin goldfilm is studied. The tunnel current is found to be strongly enhanced by partial rectification of the plasmon-induced AC tunnel currents flowing between adjacent gold islands. The DC tunnel current enhancement is found to increase approximately linearly with the laser intensity and the applied DC bias voltage. The experimental data can be well described by an electron tunnelling model which takes the plasmon-induced AC voltage into account. Thermal heating seems not to contribute to the tunnel current enhancement.