820 resultados para LUTING CEMENTS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This in vitro study evaluated the bond strength of adhesive restorative materials to sound and eroded dentin. Thirty-six bovine incisors were embedded in acrylic resin and ground to obtain flat buccal dentin surfaces. Specimens were randomly allocated in 2 groups: sound dentin (immersion in artificial saliva) and eroded dentin (pH cycling model - 3x / cola drink for 7 days). Specimens were then reassigned according to restorative material: glass ionomer cement (Ketac (TM) Molar Easy Mix), resin-modified glass ionomer cement (Vitremer (TM)) or adhesive system with resin composite (Adper Single Bond 2 + Filtek Z250). Polyethylene tubes with an internal diameter of 0.76 mm were placed over the dentin and filled with the material. The microshear bond test was performed after 24 h of water storage at 37 degrees C. The failure mode was evaluated using a stereomicroscope (400x). Bond strength data were analyzed with two-way ANOVA and Tukey's post hoc tests (alpha = 0.05). Eroded dentin showed bond strength values similar to those for sound dentin for all materials. The adhesive system showed the highest bond strength values, regardless of the substrate (p < 0.0001). For all groups, the adhesive/mixed failure prevailed. In conclusion, adhesive materials may be used in eroded dentin without jeopardizing the bonding quality. It is preferable to use an etch-and-rinse adhesive system because it shows the highest bond strength values compared with the glass ionomer cements tested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The worldwide production of bamboo generates large volumes of leaf wastes, which are deposited in landfills or burned in an uncontrolled manner, with negative effects in the environment. The ash obtained by calcining of the bamboo leaf waste, shows good qualities as supplementary cementing material for the production of blended cements. The current paper shows a detailed scientific study of a Brazilian bamboo leaf ash (BLA) calcined at 600 degrees C in small scale condition, by using different techniques (XRF, XRD, SEM/EDX, FT-IR, TG/DTG) and technical study in order. to analyse the behaviour of this ash in blended cements elaborated with 10% and 20% by mass of BLA. The results stated that this ash shows a very high pozzolanic activity, with a reaction rate constant K of the order of 10(-1)/h and type I CSH gel was the main hydrated phase obtained from pozzolanic reaction. The BLA blended cements (10% and 20%) complied with the physical and mechanical requirements of the existing European standards. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: The aim of this study was to investigate the internal fit (IF) of glass-infiltrated alumina (ICA - In-Ceram Alumina), yttria-stabilized tetragonal zirconia polycrystals (Y-TZP - IPS e.max ZirCAD), and metal-ceramic (MC - Ni-Cr alloy) crowns. Material and Methods: Sixty standardized resin-tooth replicas of a maxillary first molar were produced for crown placement and divided into 3 groups (n=20 each) according to the core material used (metal, ICA or Y-TZP). The IF of the crowns was measured using the replica technique, which employs a light body polyvinyl siloxane impression material to simulate the cement layer thickness. The data were analyzed according to the surfaces obtained for the occlusal space (OS), axial space (AS) and total mean (TM) using two-way ANOVA with Tukey's multiple comparison test (p<0.05). Results: No differences among the different areas were detected in the MC group. For the Y-TZP and ICA groups, AS was statistically lower than both OS and TM. No differences in AS were observed among the groups. However, OS and TM showed significantly higher values for ICA and Y-TZP groups than MC group. Comparisons of ICA and Y-TZP revealed that OS was significantly lower for Y-TZP group, whereas no differences were observed for TM. Conclusions: The total mean achieved by all groups was within the range of clinical acceptability. However, the metal-ceramic group demonstrated significantly lower values than the all-ceramic groups, especially in OS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: The aim of the present study was to evaluate the physicochemical properties of a bioceramic root canal sealer, Endosequence BC Sealer. Radiopacity, pH, release of calcium ions (Ca2+), and flow were analyzed, and the results were compared with AH Plus cement. Methods: Radiopacity and flow were evaluated according to ISO 6876/2001 standards. For the radiopacity analysis, metallic rings with 10-mm diameter and 1-mm thickness were filled with cements. The radiopacity value was determined according to radiographic density (mm Al). The flow test was performed with 0.05 mL of cement placed on a glass plate. A 120-g weight was carefully placed over the cement. The largest and smallest diameters of the disks formed were measured by using a digital caliper. The release of Ca2+ and pH were measured at periods of 3, 24, 72, 168, and 240 hours with spectrophotometer and pH meter, respectively. Data were analyzed by analysis of variance and Tukey test (P < .05). Results: The bioceramic endodontic cement showed radiopacity (3.84 mm Al) significantly lower than that of AH Plus (6.90 mm Al). The pH analysis showed that Endosequence BC Sealer showed pH and release of Ca2+ greater than those of AH Plus (P < .05) during the experimental periods. The flow test revealed that BC Sealer and AH Plus presented flow of 26.96 mm and 21.17 mm, respectively (P < .05). Conclusions: Endosequence BC Sealer showed radiopacity and flow according to ISO 6876/2001 recommendations. The other physicochemical properties analyzed demonstrated favorable values for a root canal sealer. (J Endod 2012;38:842-845)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: This study evaluated the performance of different adhesive systems in fiber post placement aiming to clarify the influence of different hydrophobic experimental blend adhesives, and of one commercially available adhesive on the frictional retention during a luting procedure. Material and Methods: One luting agent (70 Wt% BisGMA, 28.5% TEGDMA; 1.5% p-tolyldiethanolamine) to cement fiber posts into root canals was applied with 4 different adhesive combinations: Group 1: The etched roots were rinsed with water for 30 s to remove the phosphoric acid, then rinsed with 99.6% ethanol for 30 s, and blot-dried. A trial adhesive (base to catalyst on a 1: 1 ratio) was used with an experimental luting agent (35% Bis-GMA, 14.37% TEGDMA, 0.5% EDMAB, 0.13% CQ); Group 2: A trial adhesive (base to catalyst on a 1: 2 ratio) was luted as in Group 1; Group 3: One-Step Plus (OSP, Bisco Inc.) following the ethanol bonding technique in combination with the luting agent as in Group 1; Group 4: OSP strictly following the manufacturer's instructions using the luting agent as in Group 1. The groups were challenged with push-out tests. Posted root slices were loaded until post segment extrusion in the apical-coronal direction. Failure modes were analyzed under scanning electron microscopy. Results: Push-out strength was not significantly influenced by the luting agent (p>0.05). No statistically significant differences among the tested groups were found as Group 1 (Exp 1 - ethanol-wet bonding technique)=Group 2 (Exp 2 - ethanol-wet bonding technique)= Group 3 (OSP - ethanol-wet bonding technique)= Group 4 (control, OSP - water-wet bonding technique) (p>0.05). The dominating failure modes in all the groups were cohesive/adhesive failures, which were predominantly observed on the post/luting agent interface. Conclusions: The results of this study support the hypothesis that the proposal to replace water with ethanol to bond fiber posts to the root canal using highly hydrophobic resin is plausible, but this seems to be more the proof of a concept than a clinically applicable procedure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: The aim of this study was to compare the correspondence between gap formation and apical microleakage in root canals filled with epoxy resin-based (AH Plus) combined or not with resinous primer or with a dimethacrylate-based root canal sealer (Epiphany). Material and Methods: Thirty-nine lower single-rooted human premolars were filled by the lateral condensation technique (LC) and immersed in a 50-wt% aqueous silver nitrate solution at 37 degrees C (24 h). After longitudinal sectioning, epoxy resin replicas were made from the tooth specimens. Both the replicas and the specimens were prepared for scanning electron microscopy (SEM). The gaps were observed in the replicas. Apical microleakage was detected in the specimens by SEM/energy dispersive spectroscopy (SEM/EDS). The data were analyzed statistically using an Ordinal Logistic Regression model and Analysis of Correspondence (alpha=0.05). Results: Epiphany presented more regions containing gaps between dentin and sealer (p<0.05). There was correspondence between the presence of gaps and microleakage (p<0.05). Microleakage was similar among the root-filling materials (p>0.05). Conclusions: The resinous primer did not improve the sealing ability of AH Plus sealer and the presence of gaps had an effect on apical microleakage for all materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. The aim of this study is to critically evaluate the bond strength (BS) of Glass-Ionomer Cements (GIC) to dentine with microtensile (mu TBS) and microshear (mu SBS) BS tests by assessing their rankings and failure patterns. Methods. Samples were made on flat dentine surfaces and submitted to mTBS and mSBS. The materials used were: high viscosity GIC (Ketac (TM) Molar Aplicap-KM), resin-modified GIC (Fuji II-FII), nano-filled resin-modified GIC (Ketac (TM) N100-N100) and an etch-and-rinse adhesive system with a composite resin (Adper (TM) Single Bond 2 and Z100 (TM)-Z100). All tests were performed with a Universal Testing Machine (24 h water storage, crosshead speed of 1 mm/min). Debonded surfaces were examined with a stereomicroscope (x40) to identify the failure mode. The data was analyzed with two-way ANOVA (p < 0.05) and LSD test. Results. Means were statistically different regarding the tests and materials, indicating that values for BS obtained for each material depend on the test performed. Failure analysis revealed that failures produced by mTBS were mainly cohesive for KM and FII. mu SBS failures were mainly adhesive or mixed for all materials. For the mTBS, the rank was Z100 > FII > KM = N100, whereas for the mSBS it was Z100 = FII = KM > N100. Conclusion: It may be concluded that distinct micro-mechanical tests present different failure patterns and rankings depending on the material to be considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shear bond strength between Ni-Cr alloy bonded to a ceramic substrate Introduction: The aim of this study was to evaluate the shear bond strength between a Ni-Cr alloy and a ceramic system submitted or not to thermocycling. Materials and methods: Forty-eight cylinder blocks of Ni-Cr with 3.0 mm diameter by 4.0 mm hight and 48 disc-shaped specimens (7.0 mm in diameter by 2.0 mm thick) composed of ceramic were prepared. The Ni-Cr cylinder blocks were randomised in two groups of 24 specimens each. One group was submitted to air-particle abrasion (sandblasting) with 50 mu m Al2O3 (0.4-0.7 MPa) during 20 s, and the other group was submitted to mechanical retentions with carbide burrs. Each group was subdivided into other two groups (n = 12), submitted or not to thermocycling (500 cycles, 5-55 degrees C). The cylinder blocks were bonded to the disc-shaped ceramic specimens under 10 N of load. The shear bond strengths (MPa) were measured using a universal testing machine at a cross head speed of 0.5 mm/min and 200 kgf of load. The data were submitted to statistical analysis (ANOVA and Tukey's test). Results: The air-particle abrasion group exhibited significantly higher shear bond strength when compared to drilled group (p < 0.05). Conclusions: Thermocycling decreased significantly the bond strengths for all groups tested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim To compare the changes in the surface structure and elemental distribution, as well as the percentage of ion release, of four calcium silicate-containing endodontic materials with a well-established epoxy resin-based sealer, submitted to a solubility test. Methodology Solubility of AH Plus, iRoot SP, MTA Fillapex, Sealapex and MTA-Angelus (MTA-A) was tested according to ANSI/ADA Specification 57. The deionized water used in the solubility test was submitted to atomic absorption spectrophotometry to determine and quantify Ca2+, Na+, K+, Zn2+, Ni2+ and Pb2+ ions release. In addition, the outer and inner surfaces of nonsubmitted and submitted samples of each material to the solubility test were analysed by means of scanning electron microscopy and energy-dispersive spectroscopy (SEM/EDX). Statistical analysis was performed by using one-way anova and Tukeys post hoc tests (a = 0.05). Results Solubility results, in percentage, sorted in an increasing order were -1.24 +/- 0.19 (MTA-A), 0.28 +/- 0.08 (AH Plus), 5.65 +/- 0.80 (Sealapex), 14.89 +/- 0.73 (MTA Fillapex) and 20.64 +/- 1.42 (iRoot SP). AH Plus and MTA-A were statistically similar (P > 0.05), but different from the other materials (P < 0.05). High levels of Ca2+ ion release were observed in all groups except AH Plus sealer. MTA-A also had the highest release of Na2+ and K+ ions. Zn+2 ion release was observed only with AH Plus and Sealapex sealers. After the solubility test, all surfaces had morphological changes. The loss of matrix was evident and the filler particles were more distinguishable. EDX analysis displayed high levels of calcium and carbon at the surface of Sealapex, MTA Fillapex and iRoot SP. Conclusions AH Plus and MTA-A were in accordance with ANSI/ADAs requirements regarding solubility whilst iRoot SP, MTA Fillapex and Sealapex did not fulfil ANSI/ADAs protocols. High levels of Ca2+ ion release were observed in all materials except AH Plus. SEM/EDX analysis revealed that all samples had morphological changes in both outer and inner surfaces after the solubility test. High levels of calcium and carbon were also observed at the surface of all materials except AH Plus and MTA-A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stable carbon isotopic fractionation during calcium carbonate precipitation induced by urease-catalysed hydrolysis of urea was experimentally investigated in artificial water at a constant temperature of 30 degrees C. Carbon isotope fractionation during urea hydrolysis follows a Rayleigh distillation trend characterized by a C-13-enrichment factor of -20 to -22 parts per thousand. CaCO3 precipitate is up to 17.9 parts per thousand C-13-depleted relative to the urea substrate (-48.9 +/- 0.07 parts per thousand). Initial CaCO3 precipitate forms close to isotopic equilibrium with dissolved inorganic carbon. Subsequent precipitation occurs at -2 to -3 parts per thousand offset from isotopic equilibrium, suggesting that the initial delta C-13 value of CaCO3 is reset through dissolution followed by reprecipitation with urease molecules playing a role in offsetting the delta C-13 value of CaCO3 from isotopic equilibrium. Potentially, this isotopic systematics may provide a tool for the diagnosis of ureolytically-formed carbonate cements used as sealing agent. Moreover, it may serve as a basis to develop a carbon isotope tool for the quantification of ureolytically-induced CO2 sequestration. Finally, it suggests carbon isotope disequilibrium as a hallmark of past enzymatic activity in ancient microbial carbonate formation. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tribochemical silica-coating is the recommended conditioning method for improving glass-infiltrated alumina composite adhesion to resin cement. High-intensity lasers have been considered as an alternative for this purpose. This study evaluated the morphological effects of Er,Cr:YSGG laser irradiation on aluminous ceramic, and verified the microtensile bond strength of composite resin to ceramic following silica coating or laser irradiation. In-Ceram Alumina ceramic blocks were polished, submitted to airborne particle abrasion (110 mu m Al(2)O(3)), and conditioned with: (CG) tribochemical silica coating (110 mu m SiO(2)) + silanization (control group); (L1-L10) Er,Cr:YSGG laser (2.78 mu m, 20 Hz, 0.5 to 5.0 W) + silanization. Composite resin blocks were cemented to the ceramic blocks with resin cement. These sets were stored in 37A degrees C distilled water (24 h), embedded in acrylic resin, and sectioned to produce bar specimens that were submitted to microtensile testing. Bond strength values (MPa) were statistically analyzed (alpha a parts per thousand currency sign0.05), and failure modes were determined. Additional ceramic blocks were conditioned for qualitative analysis of the topography under SEM. There were no significant differences among silicatization and laser treatments (p > 0.05). Microtensile bond strength ranged from 19.2 to 27.9 MPa, and coefficients of variation ranged from 30 to 55%. Mixed failure of adhesive interface was predominant in all groups (75-96%). No chromatic alteration, cracks or melting were observed after laser irradiation with all parameters tested. Surface conditioning of glass-infiltrated alumina composite with Er,Cr:YSGG laser should be considered an innovative alternative for promoting adhesion of ceramics to resin cement, since it resulted in similar bond strength values compared to the tribochemical treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. The use of external sources of energy may accelerate the setting rate of glass ionomer cements (GICs) allowing better initial mechanical properties. Aim. To investigate the influence of ultrasound and halogen light on the microleakage and hardness of enamel adjacent to GIC restorations, after artificial caries challenge. Design. Cavities were prepared in 60 primary canines, restored with GIC, and randomly distributed into three groups: control group (CG), light group (LG) - irradiation with a halogen lightcuring unit for 60 s, and ultrasonic group (UG) application of ultrasonic scaler device for 15 s. All specimens were then submitted to a cariogenic challenge in a pH cycling model. Half of sample in each group were immersed in methylene blue for 4 h and sectioned for dye penetration analysis. The remaining specimens were submitted to Knoop cross-sectional microhardness assessments, and mineral changes were calculated for adjacent enamel. Results. Data were compared using Kruskal-Wallis test and two- way ANOVA with 5% significance. Higher dye penetration was observed for the UG (P < 0.01). No significant mineral changes were observed between groups (P = 0.844). Conclusion. The use of halogen light- curing unit does not seem to interfere with the properties of GICs, whereas the use of ultrasound can affect its marginal sealing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the study was to determine if the increase in radiopacity provided by bismuth oxide is related to the color alteration of calcium silicate-based cement. Calcium silicate cement (CSC) was mixed with 0%, 15%, 20%, 30% and 50% of bismuth oxide (BO), determined by weight. Mineral trioxide aggregate (MTA) was the control group. The radiopacity test was performed according to ISO 6876/2001. The color was evaluated using the CIE system. The assessments were performed after 24 hours, 7 and 30 days of setting time, using a spectrophotometer to obtain the ΔE, Δa, Δb and ΔL values. The statistical analyses were performed using the Kruskal-Wallis/Dunn and ANOVA/ Tukey tests (p < 0.05). The cements in which bismuth oxide was added showed radiopacity corresponding to the ISO recommendations ( > 3 mm equivalent of Al). The MTA group was statistically similar to the CSC / 30% BO group (p > 0.05). In regard to color, the increase of bismuth oxide resulted in a decrease in the ΔE value of the calcium silicate cement. The CSC group presented statistically higher ΔE values than the CSC / 50% BO group (p < 0.05). The comparison between 24 hours and 7 days showed higher ΔE for the MTA group, with statistical differences for the CSC / 15% BO and CSC / 50% BO groups (p < 0.05). After 30 days, CSC showed statistically higher ΔE values than CSC / 30% BO and CSC / 50% BO (p < 0.05). In conclusion, the increase in radiopacity provided by bismuth oxide has no relation to the color alteration of calcium silicate-based cements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: The sealers can be in direct contact with the periapical tissues. Thus, these materials must have appropriate physical and biological properties, providing conditions for repair to occur. Objective: The aim of this study was to evaluate the response of rat subcutaneous tissue to endodontics sealers. Material and methods: Three materials comprised the groups: group I – Zinc Oxide, Eugenol and Iodoform paste, group II – Portland cement with propylene glycol, and group III – MTA Fillapex® (Angelus). These materials were placed in polyethylene tubes and implanted into dorsal connective tissue of Wistar rats for seven and 15 days. The specimens were stained with hematoxylin and eosin and evaluated regarding to inflammatory reaction parameters through a light microscope. The data were compared using Kruskal-Wallis test with significance level of 5%. The intensity of inflammatory response against the sealers was analyzed by two blinded and previously calibrated observers for all experimental periods. Results: The histological evaluation showed that all the materials caused a moderated inflammatory reaction at seven days which decreased with time. A greater inflammatory reaction was observed at seven days in group I. The other specimens had significantly less inflammatory cells when compared to this group. Tubes with MTA Fillapex® presented some giant cells, macrophages and lymphocytes after seven days. At 15 days, the presence of fibroblasts and collagen fibers was observed indicating normal tissue healing. The group II showed similar results to those observed in MTA Fillapex® already at seven days. At 15 days the inflammatory reaction presented was almost absent at the tissue, with many collagen fibers indicating normal tissue healing. Statistical analysis showed a significant statistical difference amongst the group I (seven days) and II (15 days) (p < 0.05). In the other groups no (Continue)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: The sealers can be in direct contact with the periapical tissues. Thus, these materials must have appropriate physical and biological properties, providing conditions for repair to occur. Objective: The aim of this study was to evaluate the response of rat subcutaneous tissue to endodontics sealers. Material and methods: Three materials comprised the groups: group I – Zinc Oxide, Eugenol and Iodoform paste, group II – Portland cement with propylene glycol, and group III – MTA Fillapex® (Angelus). These materials were placed in polyethylene tubes and implanted into dorsal connective tissue of Wistar rats for seven and 15 days. The specimens were stained with hematoxylin and eosin and evaluated regarding to inflammatory reaction parameters through a light microscope. The data were compared using Kruskal-Wallis test with significance level of 5%. The intensity of inflammatory response against the sealers was analyzed by two blinded and previously calibrated observers for all experimental periods. Results: The histological evaluation showed that all the materials caused a moderated inflammatory reaction at seven days which decreased with time. A greater inflammatory reaction was observed at seven days in group I. The other specimens had significantly less inflammatory cells when compared to this group. Tubes with MTA Fillapex® presented some giant cells, macrophages and lymphocytes after seven days. At 15 days, the presence of fibroblasts and collagen fibers was observed indicating normal tissue healing. The group II showed similar results to those observed in MTA Fillapex® already at seven days. At 15 days the inflammatory reaction presented was almost absent at the tissue, with many collagen fibers indicating normal tissue healing. Statistical analysis showed a significant statistical difference amongst the group I (seven days) and II (15 days) (p < 0.05). In the other groups no significant statistical differences were observed. Conclusion: MTA Fillapex® and Portland cement with propylene glycol were more biocompatible than the other tested cements.