914 resultados para LIQUID-CRYSTALLINE PHASES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, was studied the formation of a composite of the refractory metal niobium with copper, through the process of high-energy milling and liquid phase sintering. The HEM can be used to synthesize composite powders with high homogeneity and fine size particle distribution. It may also produce the solid solubility in immiscible systems such as Nb-Cu, or extend the solubility of systems with limited solubility. Therefore, in the immiscible system Cu-Nb, the high-energy milling was successfully used to obtain the composite powder particles. Initially, the formation of composite particles during the HEM and the effect of preparation technique on the microstructure of the material was evaluated. Four loads of Nb and Cu powders containing 20%wt Cu were synthesized by MAE in a planetary type ball mill under different periods of grinding. The influence of grinding time on the metal particles is evaluated during the process by the withdrawal of samples at intermediate times of milling. After compaction under different forces, the samples were sintered in a vacuum furnace. The liquid phase sintering of these samples prepared by HEM produced a homogeneous and fine grained. The composite particles forming the sintered samples are the addition of a hard phase (Nb) with a high melting point, and a ductile phase (Cu) with low melting point and high thermal and electrical conductivities. Based on these properties, the Nb-Cu system is a potential material for many applications, such as electrical contacts, welding electrodes, coils for generating high magnetic fields, heat sinks and microwave absorbers, which are coupled to electronic devices. The characterization techniques used in this study, were laser granulometry, used to evaluate the homogeneity and particle size, and the X-ray diffraction, in the phase identification and to analyze the crystalline structure of the powders during milling. The morphology and dispersion of the phases in the composite powder particles, as well the microstructures of the sintered samples, were observed by scanning electron microscopy (SEM). Subsequently, the sintered samples are evaluated for density and densification. And finally, they were characterized by techniques of measuring the electrical conductivity and microhardness, whose properties are analyzed as a function of the parameters for obtaining the composite

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water still represents, on its critical properties and phase transitions, a problem of current scientific interest, as a consequence of the countless open questions and of the inadequacy of the existent theoretical models, mainly related to the different solid and liquid phases that this substance possesses. For example, there are 13 known crystalline forms of water, and also amorphous phases. One of them, the amorphous ice of very high density (VHDA), was just recently observed. Other example is the anomalous behavior in the macroscopic density, which presents a maximum at the temperature of 277 K. In order to experimentally investigate the behavior of one of the liquid-solid phase transitions, the anomaly in its density and also the metastability, we used three different cooling techniques and, as comparison systems, we made use of the solvents: acetone and ethyl alcohol. The first studied cooling system employ a Peltier plate, a device recently developed, which makes use of small cubes made up of semiconductors to change heat among two surfaces; the second system is a commercial refrigerator, similar to the residential ones. Finally, the liquid nitrogen technique, which is used to refrigerate the samples in a container, in two ways: a very fast and other one, almost static. In those three systems, three Beckers of aluminum were used (with a volume of 80 ml, each), containing water, alcohol and acetone. They were closed and maintained at atmospheric pressure. Inside of each Becker were installed three thermocouples, disposed along the vertical axis of the Beckers, one close to the inferior surface, other to the medium level and the last one close the superior surface. A system of data acquisition was built via virtual instrumentation using as a central equipment a Data-Acquisition board. The temperature data were collected by the three thermocouples in the three Beckers, simultaneously, in function of freezing time. We will present the behavior of temperature versus freezing time for the three substances. The results show the characterization of the transitions of the liquid

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two high-performance liquid chromatographic methods for determination of residual monomer in dental acrylic resins are described. Monomers were detected by their UV absorbance at 230 nm, on a Nucleosil((R)) C-18 (5 mu m particle size, 100 angstrom pore size, 15 x 0.46 cm i.d.) column. The separation was performed using acetonitrile-water (55:45 v/v) containing 0.01% triethylamine (TEA) for methyl methacrylate and butyl methacrylate, and acetonitrile-water (60:40 v/v) containing 0.01% TEA for isobutyl methacrylate and 1,6-hexanediol dimethacrylate as mobile phases, at a flow rate of 0.8 mL/min. Good linear relationships were obtained in the concentration range 5.0-80.0 mu g/mL for methyl methacrylate, 10.0-160.0 mu g/mL for butyl methacrylate, 50.0-500.0 mu g/mL for isobutyl methacrylate and 2.5-180.0 mu g/mL for 1,6-hexanediol dimethacrylate. Adequate assay for intra- and inter-day precision and accuracy was observed during the validation process. An extraction procedure to remove residual monomer from the acrylic resins was also established. Residual monomer was obtained from broken specimens of acrylic disks using methanol as extraction solvent for 2 h in an ice-bath. The developed methods and the extraction procedure were applied to dental acrylic resins, tested with or without post-polymerization treatments, and proved to be accurate and precise for the determination of residual monomer content of the materials evaluated. Copyright (c) 2005 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the preparation of direct hexagonal liquid crystals, constituted of oil-swollen cylinders arranged on a triangular lattice in water. The volume ratio of oil over water, rho, can be as large as 3.8. From the lattice parameter measured by small-angle X-ray scattering, we show that all the oil is indeed incorporated into the cylinders, thus allowing the diameter of the cylinders to be controlled over one decade range, provided that the ionic strength of the aqueous medium and rho are varied concomitantly. These hexagonal swollen liquid crystals (SLCs) have been first reported with sodium dodecyl sulfate as anionic surfactant, cyclohexane as solvent, 1-pentanol as co-surfactant, and sodium chloride as salt (Ramos, L.; Fabre, P. Langmuir 1997, 13, 13). The stability of these liquid crystals is investigated when the pH of the aqueous medium or the chemical nature of the components (salt and surfactant) is changed. We demonstrate that the range of stability is quite extended, rendering swollen hexagonal phases potentially useful for the fabrication of nanomaterials. As illustrations, we finally show that gelation of inorganic particles in the continuous aqueous medium of a SLC and polymerization within the oil-swollen cylinders of a SLC can be conducted without disrupting the hexagonal order of the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reactive ZrxTi1-xO4 (x=0.65, 0.50 and 0.35) powder was prepared by the polymeric precursor method. Studies by X-ray diffraction (XRD), nitrogen adsorption/desorption, and thermogravimetric analysis (TG) showed that powders with high crystallinity (>90%) and high surface areas (>40 m(2)/g) are obtained after calcination at 700 degrees C for 3 h. Infrared spectroscopy and XRD results showed that these titanates nucleate from the amorphous phase with no intermediate phases, at low temperature (450 degrees C).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the synthesis of zirconia microneedles by the direct nucleation of particles inside a hexagonal swollen liquid crystal (SLC) (cell parameter a = 27 nm) prepared by mixing with the proper ratio, an aqueous solution of sulfated zirconium colloids, a cationic surfactant (cetylpyridinium chloride), cychlohexane as swelling agent with an oil over water ratio of 2.5 (vol.), and 1-pentanol as cosurfactant. After a slow crystallogenesis that can be enhanced by an initial induction step under moderate temperature, particles in the centimeter range can be obtained, with a very high shape ratio (over 100). These particles are made of crystalline octahydrate zirconium oxychloride containing pores of 20 nm diameter, aligned along the main axis of the liquid crystal, as the fingerprint of the oil cylinders present in the hexagonal phase. The morphology of these particles confirms that the shaping mechanism is based on true liquid crystal templating (TLCT). Further thermal treatment of these particles, after extraction from the SLC, leads to the crystallization of zirconia with the same needlelike morphology as the zirconium oxychloride.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the preparation and characterization of yttria-stabilized zirconia/nickel oxide composites (YSZ/NiO). This composite is the precursor material of the cermet YSZ/Ni, which is used as solid oxide fuel cell anode material. The performance of the anode is strongly dependent on the microstructural properties of the cermet. Therefore, the control of the microstructure of the YSZ/NiO composite is a key step for the fabrication of high-performance anodes. In this study, the composites were prepared by a modified liquid mixture technique. Scanning electron microscopy analysis evidenced the good dispersion of the phases and that NiO nanoparticles are spread over the YSZ surface. Sintered pellets were studied by X-ray diffraction and impedance spectroscopy. The main results show that the composite is comprised of a well-dispersed mixture of the two phases. The electrical conductivity data show that there is a strong dependence of the transport mechanism on the relative composition of phases. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silica xerogels were prepared from sonohydrolysis of tetraethoxysilane and exchange of the liquid phase of the wet gel by acetone. Monolithic xerogels were obtained by slow evaporation of acetone. The structural characteristics of the xerogels were studied as a function of temperature up to 1100 degrees C by means of bulk and skeletal density measurements, linear shrinkage measurements and thermal analyses (DTA, TG and DL). The results were correlated with the evolution in the UV-Vis absorption. Particularly, the initial pore structure of the dried acetone-exchanged xerogel was studied by small-angle X-ray scattering and nitrogen adsorption. The acetone-exchanged xerogels exhibit greater porosity in the mesopore region presenting greater mean pore size (similar to 4 nm) when compared to non-exchanged xerogels. The porosity of the xerogels is practically stable in the temperature range between 200 degrees C and 800 degrees C. Evolution in the structure of the solid particles (silica network) is the predominant process upon heating up to about 400 degrees C and pore elimination is the predominant process above 900 degrees C. At 1000 degrees C the xerogels are still monolithic and retain about 5 vol.% pores. The xerogels exhibited foaming phenomenon after hold for 10 h at 1100 degrees C. This temperature is even higher than that found for foaming of non-exchanged xerogels. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synthesis and self-assembly of nanomaterials can be controlled by the properties of soft matter. on one hand, dedicated nanoreactors such as reverse microemulsions or miniemulsions can be designed. on the other hand, direct shape control can be provided by the topology of liquid crystals that confine the reacting medium within a specific geometry. In the first case, the preparation of micro- or miniemulsions generally requires energetic mechanical stirring. The second approach uses thermodynamically stable systems, but it remains usually limited to binary (water + surfactant) systems. We report the preparation of different families of materials in highly ordered quaternary mediums that exhibit a liquid crystal structure with a high cell parameter. They were prepared with the proper ratios of salted water, nonpolar solvent, surfactant. and cosurfactants that form spontaneously swollen hexagonal phases. These swollen liquid crystals can be prepared from all classes of surfactants (cationic, anionic, and nonionic). They contain a regular network of parallel cylinders, whose diameters can be swollen with a nonpolar solvent, that are regularly spaced in a continuous aqueous salt solution. We demonstrate in the present report that both aqueous and organic phases can be used as nanoreactors for the preparation of materials. This property is illustrated by various examples such as the synthesis of platinum nanorods prepared in the aqueous phase or zirconia needles or the photo- or gamma-ray-induced polymerization of polydiacetylene in the organic phase. In all cases, materials can be easily extracted and their final shapes are directed by the structure-directing effect imposed by the liquid crystal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microstructural evolution, grain growth and densification for the varistor systems ZnO-Bi2O3 (ZB), ZnO-Bi2O3-Sb2O3 (ZBS), ZnO-Bi2O3-Sb2O3-MnO-Cr 2O3-CoO (ZBSCCM) were studied using constant heating rate sintering, scanning electron microscopy (SEM) and in situ phase formation measurement by high temperature X-ray diffraction (HT-XRD). The results showed that the densifying process is controlled by the formation and decomposition of the Zn2Bi3Sb3O14 pyrochlore (PY) phase for the ZBS and ZBSCCM systems. The addition of transition metals (ZBSCCM system) alters the formation and decomposition reaction temperatures of the pyrochlore phase and the morphology of the Zn7Sb2O12 spinel phase. Thus, the spinel grains act as inclusions and decrease the ZnO grain growth rate. Spinel grain growth kinetics in the ZBSCCM system showed an n value of 2.6, and SEM and HT-XRD results indicate two grain growth mechanisms based on coalescence and Ostwald ripening. © 1996 Chapman & Hall.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The unique properties of ceramic foams enable their use in a variety of applications. This work investigated the effects of different parameters on the production of zirconia ceramic foam using the sol-gel process associated with liquid foam templates. Evaluation was made of the influence of the thermal treatment temperature on the porous and crystalline characteristics of foams manufactured using different amounts of sodium dodecylsulfate (SDS) surfactant. A maximum pore volume, with high porosity (94%) and a bimodal pore size distribution, was observed for the ceramic foam produced with 10% SDS. Macropores, with an average size of around 30 μm, were obtained irrespective of the SDS amount, while the average size of the supermesopores increased systematically as the SDS amount was increased up to 10%, after which it decreased. X-ray diffraction analyses showed that the sample treated at 500 °C was amorphous, while crystallization into a tetragonal metastable phase occurred at 600 °C due to the presence of sulfate groups in the zirconia structure. At 800 and 1000 °C the monoclinic phase was observed, which is thermodynamically stable at these temperatures. © 2013 by the authors; licensee MDPI, Basel, Switzerland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The liquid-liquid equilibria of systems composed of rice bran oil, free fatty acids, ethanol and water were investigated at temperatures ranging from 10 to 60 degrees C. The results of the present study indicated that the mutual solubility of the compounds decreased with an increase in the water content of the solvent and a decrease in the temperature of the solution. The experimental data set was correlated by applying the UNIQUAC model. The average variance between the experimental and calculated compositions was 0.35%, indicating that the model can accurately predict behavior of the compounds at different temperatures and degrees of hydration. The adjustment of interaction parameters enables both the simulation of liquid-liquid extractors for deacidification of vegetable oil and the prediction of phase compositions for the oil and alcohol-rich phases that are generated during cooling of the stream exiting the extractor (when using ethanol as the solvent). (C) 2012 Elsevier Ltd. All rights reserved.