985 resultados para LINEAR-POLYMERS
Resumo:
The decadal predictability of three-dimensional Atlantic Ocean anomalies is examined in a coupled global climate model (HadCM3) using a Linear Inverse Modelling (LIM) approach. It is found that the evolution of temperature and salinity in the Atlantic, and the strength of the meridional overturning circulation (MOC), can be effectively described by a linear dynamical system forced by white noise. The forecasts produced using this linear model are more skillful than other reference forecasts for several decades. Furthermore, significant non-normal amplification is found under several different norms. The regions from which this growth occurs are found to be fairly shallow and located in the far North Atlantic. Initially, anomalies in the Nordic Seas impact the MOC, and the anomalies then grow to fill the entire Atlantic basin, especially at depth, over one to three decades. It is found that the structure of the optimal initial condition for amplification is sensitive to the norm employed, but the initial growth seems to be dominated by MOC-related basin scale changes, irrespective of the choice of norm. The consistent identification of the far North Atlantic as the most sensitive region for small perturbations suggests that additional observations in this region would be optimal for constraining decadal climate predictions.
Resumo:
The mechanisms underlying the increase in stress for large mechanical strains of a polymer glass, quantified by the strain-hardening modulus, are still poorly understood. In the present paper we aim to elucidate this matter and present new mechanisms. Molecular-dynamics simulations of two polymers with very different strain-hardening moduli (polycarbonate and polystyrene) have been carried out. Nonaffine displacements occur because of steric hindrances and connectivity constraints. We argue that it is not necessary to introduce the concept of entanglements to understand strain hardening, but that hardening is rather coupled with the increase in the rate of nonaffine particle displacements. This rate increases faster for polycarbonate, which has the higher strain-hardening modulus. Also more nonaffine chain stretching is present for polycarbonate. It is shown that the inner distances of such a nonaffinely deformed chain can be well described by the inner distances of the worm-like chain, but with an effective stiffness length (equal to the Kuhn length for an infinite worm-like chain) that increases during deformation. It originates from the finite extensibility of the chain. In this way the increase in nonaffine particle displacement can be understood as resulting from an increase in the effective stiffness length of the perturbed chain during deformation, so that at larger strains a higher rate of plastic events in terms of nonaffine displacement is necessary, causing in turn the observed strain hardening in polymer glasses.
Resumo:
The contributions of different time scales to extratropical teleconnections are examined. By applying empirical orthogonal functions and correlation analyses to reanalysis data, it is shown that eddies with periods shorter than 10 days have no linear contribution to teleconnectivity. Instead, synoptic variability follows wavelike patterns along the storm tracks, interpreted as propagating baroclinic disturbances. In agreement with preceding studies, it is found that teleconnections such as the North Atlantic Oscillation (NAO) and the Pacific–North America (PNA) pattern occur only at low frequencies, typically for periods more than 20 days. Low-frequency potential vorticity variability is shown to follow patterns analogous to known teleconnections but with shapes that differ considerably from them. It is concluded that the role, if any, of synoptic eddies in determining and forcing teleconnections needs to be sought in nonlinear interactions with the slower transients. The present results demonstrate that daily variability of teleconnection indices cannot be interpreted in terms of the teleconnection patterns, only the slow part of the variability.
Resumo:
This article presents an overview of a transform method for solving linear and integrable nonlinear partial differential equations. This new transform method, proposed by Fokas, yields a generalization and unification of various fundamental mathematical techniques and, in particular, it yields an extension of the Fourier transform method.