997 resultados para LDL-R
Resumo:
En aquest projecte es vol implementar una llibreria en Java, que proporcioni leseines necessàries per a crear diagrames i esquemes. Es vol proporcionar a la llibreria unconjunt d’objectes bàsics, també mètodes i funcionalitats suficients per a gestionaraquests objectes. Per altra part, es vol implementar una aplicació per a dissenyar diagrames Entitat-Relació que utilitzi aquesta llibreria
Resumo:
Connexin36 (Cx36), a trans-membrane protein that forms gap junctions between insulin-secreting beta-cells in the Langerhans islets, contributes to the proper control of insulin secretion and beta-cell survival. Hypercholesterolemia and pro-atherogenic low density lipoproteins (LDL) contribute to beta-cell dysfunction and apoptosis in the context of Type 2 diabetes. We investigated the impact of LDL-cholesterol on Cx36 levels in beta-cells. As compared to WT mice, the Cx36 content was reduced in islets from hypercholesterolemic ApoE-/- mice. Prolonged exposure to human native (nLDL) or oxidized LDL (oxLDL) particles decreased the expression of Cx36 in insulin secreting cell-lines and isolated rodent islets. Cx36 down-regulation was associated with overexpression of the inducible cAMP early repressor (ICER-1) and the selective disruption of ICER-1 prevented the effects of oxLDL on Cx36 expression. Oil red O staining and Plin1 expression levels suggested that oxLDL were less stored as neutral lipid droplets than nLDL in INS-1E cells. The lipid beta-oxidation inhibitor etomoxir enhanced oxLDL-induced apoptosis whereas the ceramide synthesis inhibitor myriocin partially protected INS-1E cells, suggesting that oxLDL toxicity was due to impaired metabolism of the lipids. ICER-1 and Cx36 expressions were closely correlated with oxLDL toxicity. Cx36 knock-down in INS-1E cells or knock-out in primary islets sensitized beta-cells to oxLDL-induced apoptosis. In contrast, overexpression of Cx36 partially protected INS-1E cells against apoptosis. These data demonstrate that the reduction of Cx36 content in beta-cells by oxLDL particles is mediated by ICER-1 and contributes to oxLDL-induced beta-cell apoptosis.
Resumo:
This paper studies how the strength of intellectual property rights (IPRs) affects investments in biological innovations when the value of an innovation is stochastically reduced to zero because of the evolution of pest resistance. We frame the problem as a research and development (R&D) investment game in a duopoly model of sequential innovation. We characterize the incentives to invest in R&D under two competing IPR regimes, which differ in their treatment of the follow-on innovations that become necessary because of pest adaptation. Depending on the magnitude of the R&D cost, ex ante firms might prefer an intellectual property regime with or without a “research exemption” provision. The study of the welfare function that also accounts for benefit spillovers to consumers—which is possible analytically under some parametric conditions, and numerically otherwise—shows that the ranking of the two IPR regimes depends critically on the extent of the R&D cost.
Resumo:
Kirje 18.11.1975
Resumo:
[Mazarinade. 1649]
Resumo:
[Mazarinade. 1649]