1000 resultados para Isotope Geochemistry
Resumo:
Sapropels -organic-matter rich layers- are common in Neogene sediments of the eastern Mediterranean Sea. The formation of these layers has been attributed to climate-related increases in organic-matter production (Calvert et al., 1992, doi:10.1038/359223a0; Rossignol-Strick et al., 1982, doi:10.1038/295105a0; Rohling, 1994, doi:10.1016/0025-3227(94)90202-X) and increased organic-matter preservation due to oxygen depletion in more stagnant bottom waters (Rossignol-Strick et al., 1982, doi:10.1038/295105a0; Rohling, 1994, doi:10.1016/0025-3227(94)90202-X). Here we report that eastern Mediterranean Pliocene sapropels (Emeis et al., 1996, doi:10.2973/odp.proc.ir.160.102.1996) contain molecular fossils of a compound (isorenieratene) known to be synthesized by photosynthetic green sulphur bacteria, suggesting that sulphidic (euxinic) -and therefore anoxic- conditions prevailed in the photic zone of the water column. These sapropels also have a high trace-metal content, which is probably due to the efficient scavenging of these metals by precipitating sulphides in a euxinic water column. The abundance and sulphur-isotope composition of pyrite are consistent with iron sulphide formation in the water column. We conclude that basin-wide water-column euxinia occurred over substantial periods during Pliocene sapropel formation in the eastern Mediterranean Sea, and that the ultimate degradation of the increased organic-matter production was strongly influential in generating and sustaining the euxinic conditions.
Resumo:
During the early Eocene, a series of short-term global warming events ("hyperthermals") occurred in response to the rapid release of carbon into the oceans and atmosphere. In order to investigate the response of ocean redox to global warming, we have determined the molybdenum isotope compositions (d98/95Mo) of samples spanning one such hyperthermal (Eocene Thermal Maximum 2 (ETM-2, 54.1 Ma)), from Integrated Ocean Drilling Program Expedition 302 Site M0004A in the Arctic Ocean. The highest d98/95Mo in our sample set (2.00 ± 0.11 per mil) corresponds to the development of local euxinia at Site M0004A during the peak of ETM-2, which we interpret as recording the global seawater d98/95Mo at that time. The ETM-2 seawater d98/95Mo is indistinguishable from a recent estimate of seawater d98/95Mo from an earlier hyperthermal (Paleocene Eocene Thermal Maximum (PETM, 55.9 Ma), d98/95Mo = 2.08 ± 0.11 per mil). We argue that the similarity in seawater d98/95Mo during ETM-2 and the PETM was caused by the development of transient euxinia in the Arctic Ocean during each hyperthermal that allowed sediments accumulating in this basin to capture the long-term d98/95Mo of early Eocene seawater. Our new data therefore place a minimum constraint on the magnitude of transient global seafloor deoxygenation during early Eocene hyperthermals.
Resumo:
Structural-petrologic and isotopic-geochronologic data on magmatic, metamorphic, and metasomatic rocks from the Chernorud zone were used to reproduce the multistage history of their exhumation to upper crustal levels. The process is subdivided into four discrete stages, which corresponded to metamorphism to the granulite facies (500-490 Ma), metamorphism to the amphibolite facies (470-460 Ma), metamorphism to at least the epidote-amphibolite facies (440-430 Ma), and postmetamorphic events (410-400 Ma). The earliest two stages likely corresponded to the tectonic stacking of the backarc basin in response to the collision of the Siberian continent with the Eravninskaya island arc or the Barguzin microcontinent, a process that ended with the extensive generation of synmetamorphic granites. During the third and fourth stages, the granulites of the Chernorud nappe were successively exposed during intense tectonic motions along large deformation zones (Primorskii fault, collision lineament, and Orso Complex). The comparison of the histories of active thermal events for Early Caledonian folded structures in the Central Asian Foldbelt indicates that active thermal events of equal duration are reconstructed for the following five widely spiced accretion-collision structures: the Chernorud granulite zone in the Ol'khon territory, the Slyudyanka crystalline complex in the southwestern Baikal area, the western Sangilen territory in southeastern Tuva, Derbinskii terrane in the Eastern Sayan, and the Bayankhongor ophiolite zone in central Mongolia. The dates obtained by various isotopic techniques are generally consistent with the four discrete stages identified in the Chernorud nappe, whereas the dates corresponding to the island-arc evolutionary stage were obtained only for the western Sangilen and Bayankhongor ophiolite zone.
Resumo:
The position of the North Atlantic Current (NAC) during the intensification of Northern Hemisphere glaciation (iNHG) has been evaluated using dinoflagellate cyst assemblages and foraminiferal geochemistry from a ~260 kyr interval straddling the base of the Quaternary System from two sites: eastern North Atlantic Deep Sea Drilling Project Site 610 in the path of the present NAC and central North Atlantic Integrated Ocean Drilling Program Site U1313 in the subtropical gyre. Stable isotope and foraminiferal Mg/Ca analyses confirm cooling near the marine isotope stage (MIS) G7-G6 transition (2.74 Ma). However, a continued dominance of the dinoflagellate cyst Operculodinium centrocarpum sensu Wall and Dale (1966) indicates an active NAC in the eastern North Atlantic for a further 140 kyr. At MIS 104 (~2.60 Ma), a profound dinoflagellate cyst assemblage turnover indicates NAC shutdown in the eastern North Atlantic, implying elevated atmospheric pressure over the Arctic and a resulting shift in the westerlies that would have driven the NAC. These findings challenge recent suggestions that there was no significant southward shift of the NAC or the Arctic Front during iNHG, and reveal a fundamental climatic reorganization near the base of the Quaternary.
Resumo:
The Plio-Pleistocene intensification of Northern Hemisphere continental ice-sheet development is known to have profoundly affected the global climate system. Evidence for early continental glaciation is preserved in sediments throughout the North Atlantic Ocean, where ice-rafted detritus (IRD) layers attest to the calving of sediment-loaded icebergs from circum-Atlantic ice sheets. So far, Early-Pleistocene IRD deposition has been attributed to the presence of high-latitudinal ice sheets, whereas the existence and extent of ice accumulation in more temperate, mid-latitudinal regions remains enigmatic. Here we present results from the multiproxy provenance analysis of a unique, Pleistocene-Holocene IRD sequence from the Irish NE Atlantic continental margin. There, the Challenger coral carbonate mound (IODP Expedition 307 site U1317) preserved an Early-Pleistocene record of 16 distinctive IRD events, deposited between ca 2.6 and 1.7 Ma. Strong and complex IRD signals are also identified during the mid-Pleistocene climate transition (ca 1.2 to 0.65 Ma) and throughout the Middle-Late Pleistocene interval. Radiogenic isotope source-fingerprinting, in combination with coarse lithic component analysis, indicates a dominant sediment source in the nearby British-Irish Isles, even for the oldest, Early-Pleistocene IRD deposits. Hence, our findings demonstrate, for the first time, repeated and substantial (i.e. marine-terminating) ice accumulation on the British-Irish Isles since the beginning of the Pleistocene. Contemporaneous expansion of both high- and mid-latitudinal ice sheets in the North Atlantic region is therefore implied at the onset of the Pleistocene. Moreover, it suggests the recurrent establishment of (climatically) favourable conditions for ice sheet inception, growth and instability in mid-latitudinal regions, even in the earliest stages of Northern Hemisphere glacial expansion and in an obliquity-driven climate system.
Resumo:
The DSDP/ODP Hole 504B, drilled in the 5.9 Ma southern flank of the Costa Rica Rift, represents the deepest section through modern ocean floor basaltic basement. The hole penetrates a 570 m thick volcanic zone, a 210 m thick transition zone of volcanic rocks and dykes, and 1056 m of dykes. A representative selection of these basalt types has been investigated with respect to Nd and Pb isotopes. The epsilonNd of the basalts varies from 7.62 to 11.16. This range in the Nd-isotope composition represents about 67% of the total range reported for Pacific MORB. The Pb-isotope composition also shows significant variation, with 206Pb/204Pb varying from 17.90 to 18.82. The isotopic data show that a small volume of enriched mantle existed in the source. The large ranges in isotopic composition in a single drill hole demonstrate the importance of small-scale mantle heterogeneities in the petrogenesis of MORB. Fractional melting and extraction of small magma batches by channelled flow, and small, short-lived crustal magma reservoirs, with limited potential for mixing of the mantle derived magmas, are favored by these isotopic data.
Resumo:
DSDP Hole 504B is the only hole in oceanic crust to penetrate through the volcanic section and into hydrothermally altered sheeted dikes. We have carried out petrologic and sulfur isotopic analyses of sulfide and sulfate minerals and whole rocks from the core in order to place constraints on the geochemistry of sulfur during hydrothermal alteration of ocean crust. The nearly 600 m-thick pillow section has lost sulfur to seawater and has net d34S = -1.8 per mil due to degassing of SO2 during crystallization and subsequent low temperature interaction with seawater. Hydrothermally altered rocks in the 200 m-thick transition zone are enriched in S and 34S (4300 ppm and +3.0 +/-1.2 per mil, respectively), whereas the more than 500 m of sheeted dikes contain 720 ppm S with d34S = +0.6 +/-1.4 per mil. These data are consistent with the presence of predominantly basaltic sulfur in hydrothermal fluids deep in the crust: following precipitation of anhydrite during seawater recharge, small amounts of seawater sulfate were reduced at temperatures >250°C through conversion of igneous pyrrhotite to secondary pyrite and minor oxidation of ferrous iron in the crust. The S- and 34S-enrichments of the transition zone are the results of seawater sulfate reduction and sulfide deposition during subsurface mixing between upwelling hot (up to 350°C) hydrothermal fluids and seawater. Seawater sulfate was probably reduced through oxidation of ferrous iron in hydrothermal fluids and in the transition zone rocks. Alteration of the upper crust resulted in loss of basaltic sulfur to seawater, fixation of minor seawater sulfur in the crust and redistribution of magmatic sulfur within the crust. This caused net increases in sulfur content and d34S of the upper 1.8 km of the oceanic crust.
Resumo:
Bulk chlorine concentrations and chlorine stable isotope compositions were determined for hydrothermally altered basalt (extrusive lavas and sheeted dikes) and gabbro samples (n = 50) from seven DSDP/ODP/IODP drill sites. These altered oceanic crust (AOC) samples span a range of crustal ages, tectonic settings, alteration type, and crustal depth. Bulk chlorine concentrations range from < 0.01 wt.% to 0.09 wt.%. In general, higher chlorine concentrations coincide with an increase in temperature of alteration and amphibole content. d37Cl values of whole rock AOC samples range from -1.4 to +1.8 per mil. High d37Cl values (>=~0.5 per mil) are associated with areas of higher amphibole content. This observation is consistent with theoretical calculations that estimate amphibole should be enriched in 37Cl compared to co-existing fluid. Negative to near zero d37Cl values are found in areas dominated by clay minerals. Chlorine geochemistry is a rough indicator of metamorphic grade and mineralogy. AOC is a major Cl host in the subducting oceanic lithospheric slab. Here we show that bulk chlorine concentrations are ~3 times higher than previous estimates resulting in a greater contribution of Cl to the mantle.