919 resultados para Invertebrates.
Resumo:
Toll-like receptors are pattern recognition receptors with which hosts recognize pathogen-associated molecular patterns (PAMP). This recognition process is translated rapidly into a meaningful defense reaction. This form of innate host defense is preserved in the animal kingdom: invertebrates heavily depend on it; higher vertebrates also have an adaptive immune system. Both adaptive and innate immune systems are intertwined in that the former also depends on an intact innate recognition and response system. Members of the TLR system cover recognition of parasitic, bacterial or viral germs. Due to the constraints imposed by the necessity to recognize PAMP and to interact with downstream signaling molecules, the TLR system is relatively conserved in evolution. Nevertheless, subtle species differences have been reported for several mammalian TLR members. Examples of this will be given. In all mammalian species investigated, part of the coding sequence is available for the most important TLR members, thus allowing study of expression of these TLR members in various tissues by reverse-transcription polymerase chain reaction in its classical (RT-PCR) and quantitative real time RT-PCR (qRT-PCR) form. In some species, the whole coding sequences of the most important or even all TLR members are known. This allows construction of cDNA and transfection of common host cells, thus permitting functional studies. Extensive investigations were devoted to the study of non-synonymous single nucleotide polymorphisms. In a few cases, expression of a given amino acid in the extracellular (ligand-binding) portion of TLR members could be associated with infectious diseases. This will be discussed below.
Resumo:
The proposition posed is that the value of amino acid conjugation to the organism is not, as in the traditional view, to use amino acids for the detoxication of aromatic acids. Rather, the converse is more likely, to use aromatic acids that originate from the diet and gut microbiota to assist in the regulation of body stores of amino acids, such as glycine, glutamate, and, in certain invertebrates, arginine, that are key neurotransmitters in the central nervous system (CNS). As such, the amino acid conjugations are not so much detoxication reactions, rather they are homeostatic and neuroregulatory processes. Experimental data have been culled in support of this hypothesis from a broad range of scientific and clinical literature. Such data include the low detoxication value of amino acid conjugations and the Janus nature of certain amino acids that are both neurotransmitters and apparent conjugating agents. Amino acid scavenging mechanisms in blood deplete brain amino acids. Amino acids glutamate and glycine when trafficked from brain are metabolized to conjugates of aromatic acids in hepatic mitochondria and then irreversibly excreted into urine. This process is used clinically to deplete excess nitrogen in cases of urea cycle enzymopathies through excretion of glycine or glutamine as their aromatic acid conjugates. Untoward effects of high-dose phenylacetic acid surround CNS toxicity. There appears to be a relationship between extent of glycine scavenging by benzoic acid and psychomotor function. Glycine and glutamine scavenging by conjugation with aromatic acids may have important psychosomatic consequences that link diet to health, wellbeing, and disease.
Resumo:
Benthic communities in tributary-mainstem networks might interact via downstream drift of invertebrates or material from tributaries and adult dispersal from the mainstem. Depending on the strength of these interactions, mainstem downstream communities are expected to be more similar to tributary communities due to drift or habitat alteration. Communities not connected by flow are expected to be similar due to adult dispersal but decreasing in similarity with distance from the mainstem. We investigated interactions between invertebrate communities of a 7th order river and 5th order tributary by comparing benthic community structure in the river upstream and downstream of the tributary confluence and upstream in the tributary. Non-metric multidimensional scaling showed invertebrate communities and habitat traits from river locations directly downstream of the tributary clustered tightly, intermediate between tributary and mid-channel river locations. In addition, Bray-Curtis dissimilarity increased between the mainstem and tributary with distance upstream in the tributary. Our results indicate that similarities between mainstem and tributary communities are potentially caused by direct mass effects from tributary to downstream mainstem communities by invertebrate drift and indirect mass effects by habitat restructuring via material delivery from the tributary, as well as potential effects of adult dispersal from the river on proximal tributary communities.
Resumo:
Background Meadows are regularly mown in order to provide fodder or litter for livestock and to prevent vegetation succession. However, the time of year at which meadows should be first mown in order to maximize biological diversity remains controversial and may vary with respect to context and focal taxa. We carried out a systematic review and meta-analysis on the effects of delaying the first mowing date upon plants and invertebrates in European meadowlands. Methods Following a CEE protocol, ISI Web of Science, Science Direct, JSTOR, Google and Google Scholar were searched. We recorded all studies that compared the species richness of plants, or the species richness or abundance of invertebrates, between grassland plots mown at a postponed date (treatment) vs plots mown earlier (control). In order to be included in the meta-analysis, compared plots had to be similar in all management respects, except the date of the first cut that was (mostly experimentally) manipulated. They were also to be located in the same meadow type. Meta-analyses applying Hedges’d statistic were performed. Results Plant species richness responded differently to the date to which mowing was postponed. Delaying mowing from spring to summer had a positive effect, while delaying either from spring to fall, or from early summer to later in the season had a negative effect. Invertebrates were expected to show a strong response to delayed mowing due to their dependence on sward structure, but only species richness showed a clearly significant positive response. Invertebrate abundance was positively influenced in only a few studies. Conclusions The present meta-analysis shows that in general delaying the first mowing date in European meadowlands has either positive or neutral effects on plant and invertebrate biodiversity (except for plant species richness when delaying from spring to fall or from early summer to later). Overall, there was also strong between-study heterogeneity, pointing to other major confounding factors, the elucidation of which requires further field experiments with both larger sample sizes and a distinction between taxon-specific and meadow-type-specific responses.
Resumo:
FGFRL1 is a novel member of the fibroblast growth factor receptor family that controls the formation of musculoskeletal tissues. Some vertebrates, including man, cow, dog, mouse, rat and chicken, possess a single copy the FGFRL1 gene. Teleostean fish have two copies, fgfrl1a and fgfrl1b, because they have undergone a whole genome duplication. Vertebrates belong to the chordates, a phylum that also includes the subphyla of the cephalochordates (e.g. Branchiostoma floridae) and urochordates (tunicates, e.g. Ciona intestinalis). We therefore investigated whether other chordates might also possess an FGFRL1 related gene. In fact, a homologous gene was found in B. floridae (amphioxus). The corresponding protein showed 60% sequence identity with the human protein and all sequence motifs identified in the vertebrate proteins were also conserved in amphioxus Fgfrl1. In contrast, the genome of the urochordate C. intestinalis and those from more distantly related invertebrates including the insect Drosophila melanogaster and the nematode Caenorhabditis elegans did not appear to contain any related sequences. Thus, the FGFRL1 gene might have evolved just before branching of the vertebrate lineage from the other chordates.
Resumo:
Collagen is a major component of extracellular matrix and a wide variety of types exist. Cells recognise collagen in different ways depending on sequence and structure. They can recognise predominantly primary sequence, they may require triple-helical structure or they can require fibrillar structures. Since collagens are major constituents of the subendothelium that determine the thrombogenicity of the injured or pathological vessel wall, a major role is induction of platelet activation and aggregation as the start of repair processes. Platelets have at least two direct and one indirect (via von Willebrand factor) receptors for collagen, and collagen has specific recognition motifs for these receptors. These receptors and recognition motifs are under intensive investigation in the search for possible methods to control platelet activation in vivo. A wide range of proteins has been identified and, in part, characterised from both haematophageous insects and invertebrates but also from snake venoms that inhibit platelet activation by collagen or induce platelet activation via collagen receptors on platelets. These will provide model systems to test the effect of inhibition of specific collagen-platelet receptor interactions for both effectiveness as well as for side effects and should provide assay systems for the development of small molecule inhibitors. Since platelet inhibitors for long-term prophylaxis of cardiovascular diseases are still in clinical trials there are many unanswered questions about long-term effects both positive and negative. The major problem which still has to be definitively solved about these alternative approaches to inhibition of platelet activation is whether they will show advantages in terms of dose-response curves while offering decreased risks of bleeding problems. Preliminary studies would seem to suggest that this is indeed the case.
Resumo:
BACKGROUND: FGFRL1, the gene for the fifth member of the fibroblast growth factor receptor (FGFR) family, is found in all vertebrates from fish to man and in the cephalochordate amphioxus. Since it does not occur in more distantly related invertebrates such as insects and nematodes, we have speculated that FGFRL1 might have evolved just before branching of the vertebrate lineage from the other invertebrates (Beyeler and Trueb, 2006). RESULTS: We identified the gene for FGFRL1 also in the sea urchin Strongylocentrotus purpuratus and cloned its mRNA. The deduced amino acid sequence shares 62% sequence similarity with the human protein and shows conservation of all disulfides and N-linked carbohydrate attachment sites. Similar to the human protein, the S. purpuratus protein contains a histidine-rich motif at the C-terminus, but this motif is much shorter than the human counterpart. To analyze the function of the novel motif, recombinant fusion proteins were prepared in a bacterial expression system. The human fusion protein bound to nickel and zinc affinity columns, whereas the sea urchin protein barely interacted with such columns. Direct determination of metal ions by atomic absorption revealed 2.6 mole zinc/mole protein for human FGFRL1 and 1.7 mole zinc/mole protein for sea urchin FGFRL1. CONCLUSION: The FGFRL1 gene has evolved much earlier than previously assumed. A comparison of the intracellular domain between sea urchin and human FGFRL1 provides interesting insights into the shaping of a novel zinc binding domain.
Resumo:
Understanding past methane dynamics in arctic wetlands and lakes is crucial for estimating future methane release. Methane fluxes from lake ecosystems have increasingly been studied, yet only few reconstructions of past methane emissions from lakes are available. In this study, we develop an approach to assess changes in methane availability in lakes based on δ13C of chitinous invertebrate remains and apply this to a sediment record from a Siberian thermokarst lake. Diffusive methane fluxes from the surface of ten newly sampled Siberian lakes and seven previously studied Swedish lakes were compared to taxon-specific δ13C values of invertebrate remains from lake surface sediments to investigate whether these invertebrates assimilated 13C-depleted carbon typical for methane. Remains of chironomid larvae of the tribe Orthocladiinae that, in the study lakes, mainly assimilate plant-derived carbon had higher δ13C than other invertebrate groups. δ13C of other invertebrates such as several chironomid groups (Chironomus, Chironomini, Tanytarsini, and Tanypodinae), cladocerans (Daphnia), and ostracods were generally lower. δ13C of Chironomini and Daphnia, and to a lesser extent Tanytarsini was variable in the lakes and lower at sites with higher diffusive methane fluxes. δ13C of Chironomini, Tanytarsini, and Daphnia were correlated significantly with diffusive methane flux in the combined Siberian and Swedish dataset (r = −0.72, p = 0.001, r = −0.53, p = 0.03, and r = −0.81, p < 0.001, respectively), suggesting that δ13C in these invertebrates was affected by methane availability. In a second step, we measured δ13C of invertebrate remains from a sediment record of Lake S1, a shallow thermokarst lake in northeast Siberia. In this record, covering the past ca 1000 years, δ13C of taxa most sensitive to methane availability (Chironomini, Tanytarsini, and Daphnia) was lowest in sediments deposited from ca AD 1250 to ca AD 1500, and after AD 1970, coinciding with warmer climate as indicated by an independent local temperature record. As a consequence the offset in δ13C between methane-sensitive taxa and bulk organic matter was higher in these sections than in other parts of the core. In contrast, δ13C of other invertebrate taxa did not show this trend. Our results suggest higher methane availability in the study lake during warmer periods and that thermokarst lakes can respond dynamically in their methane output to changing environmental conditions.
Resumo:
Chlamydia are obligate intracellular bacteria and important pathogens of humans and animals. Chlamydia-related bacteria are also major fish pathogens, infecting epithelial cells of the gills and skin to cause the disease epitheliocystis. Given the wide distribution, ancient origins and spectacular diversity of bony fishes, this group offers a rich resource for the identification and isolation of novel Chlamydia. The broad-nosed pipefish (Syngnathus typhle) is a widely distributed and genetically diverse temperate fish species, susceptible to epitheliocystis across much of its range. We describe here a new bacterial species, Candidatus Syngnamydia venezia; epitheliocystis agent of S. typhle and close relative to other chlamydial pathogens which are known to infect diverse hosts ranging from invertebrates to humans
Resumo:
The conversion of forest into farmland has resulted in mosaic landscapes in many parts of the tropics. From a conservation perspective, it is important to know whether tropical farmlands can buffer species loss caused by deforestation and how different functional groups of birds respond to land-use intensification. To test the degree of differentiation between farmland and forest bird communities across feeding guilds, we analyzed stable C and N isotopes in blood and claws of 101 bird species comprising four feeding guilds along a tropical forest-farmland gradient in Kenya. We additionally assessed the importance of farmland insectivores for pest control in C4 crops by using allometric relationships, C stable isotope ratios and estimates of bird species abundance. Species composition differed strongly between forest and farmland bird communities. Across seasons, forest birds primarily relied on C3 carbon sources, whereas many farmland birds also assimilated C4 carbon. While C sources of frugivores and omnivores did not differ between forest and farmland communities, insectivores used more C4 carbon in the farmland than in the forest. Granivores assimilated more C4 carbon than all other guilds in the farmland. We estimated that insectivorous farmland birds consumed at least 1,000 kg pest invertebrates km−2 year−1. We conclude that tropical forest and farmland understory bird communities are strongly separated and that tropical farmlands cannot compensate forest loss for insectivorous forest understory birds. In tropical farmlands, insectivorous bird species provide a quantitatively important contribution to pest control.
Resumo:
Semi-natural grasslands are widely recognized for their high ecological value. They often count among the most species-rich habitats, especially in traditional cultural landscapes. Maintaining and/or restoring them is a top priority, but nevertheless represents a real conservation challenge, especially regarding their invertebrate assemblages. The main goal of this study was to experimentally investigate the influence of four different mowing regimes on orthopteran communities and populations: (1) control meadow (C-meadow): mowing regime according to the Swiss regulations for extensively managed meadows declared as ecological compensation areas, i.e. first cut not before 15 June; (2) first cut not before 15 July (delayed treatment, D-meadow); (3) first cut not before 15 June and second cut not earlier than 8 weeks from the first cut (8W-meadow); (4) refuges left uncut on 10–20% of the meadow area (R-meadow). Data were collected two years after the introduction of these mowing treatments. Orthopteran densities from spring to early summer were five times higher in D-meadows, compared to C-meadows. In R-meadows, densities were, on average, twice as high as in C-meadows, while mean species richness was 23% higher in R-meadows than in C-meadows. Provided that farmers were given the appropriate financial incentives, the D- and R-meadow regimes could be relatively easy to implement within agri-environment schemes. Such meadows could deliver substantial benefits for functional biodiversity, including sustenance to many secondary consumers dependent on field invertebrates as staple food.
Resumo:
Periodically-harvested closures are commonly employed within co-management frameworks to help manage small-scale, multi-species fisheries in the Indo-Pacific. Despite their widespread use, the benefits of periodic harvesting strategies for multi-species fisheries have, to date, been largely untested. We examine catch and effort data from four periodically-harvested reef areas and 55 continuously-fished reefs in Solomon Islands. We test the hypothesis that fishing in periodically-harvested closures would yield: (a) higher catch rates, (b) proportionally more short lived, fast growing, sedentary taxa, and (c) larger finfish and invertebrates, compared to catches from reefs continuously open to fishing. Our study showed that catch rates were significantly higher from periodically-harvested closures for gleaning of invertebrates, but not for line and spear fishing. The family level composition of catches did not vary significantly between open reefs and periodically-harvested closures. Fish captured from periodically-harvested closures were slightly larger, but Trochus niloticus were significantly smaller than those from continuously open reefs. In one case of intense and prolonged harvesting, gleaning catch rates significantly declined, suggesting invertebrate stocks were substantially depleted in the early stages of the open period. Our study suggests periodically-harvested closures can have some short term benefits via increasing harvesting efficiency. However, we did not find evidence that the strategy had substantially benefited multi-species fin-fisheries.
Resumo:
The abundance of many invertebrates with planktonic larval stages can be determined shortly after they reach the benthos. In this study, we quantified patterns of abundance and habitat utilization of early benthic phases of the American lobster Homarus americanus and the rock crab Cancer irroratus. These 2 decapods are among the most common and abundant macroinvertebrates in coastal zones of the Gulf of Maine, with similar densities of larger individuals. Settlement and early postsettlement survival indicate that lobsters are highly substrate-specific early in life, settling predominantly in cobble beds. Crabs appear to be less selective, setting both in cobble and sand. Cumulative settlement of crabs, inferred from weekly censuses over the summer, was an order of magnitude greater than that of lobsters over the same time period. However, only crabs showed significant postsettlement losses. Although the identity of specific predators is unknown, predator exclusion experiments and placement of vacant uninhabited nursery habitat suggested that post-settlement mortality rather than emigration was responsible for these losses. The selective habitat-seeking behavior and lower post-settlement mortality of lobsters is consistent with their lower fecundity and later onset of reproductive maturity. The patterns observed for crabs, however, suggest a different strategy which is more in accordance with their higher fecundity and earlier onset of maturity. It is possible that lower fecundity but greater per-egg investment, along with strict habitat selection at settlement and lower post-settlement mortality, allows adult lobster populations to equal adult populations of crabs. This occurs despite crabs being more fecund and less habitat-selective settlers but sustaining higher postsettlement mortality.
Resumo:
Taxon-specific stable carbon isotope (δ13C) analysis of chitinous remains of invertebrates can provide valuable information about the carbon sources used by invertebrates living in specific habitats of lake ecosystems (for example, sediments, water column, or aquatic vegetation). This is complementary to δ13C of sedimentary organic matter (SOM), which provides an integrated signal of organic matter produced in a lake and its catchment, and of diagenetic processes within sediments. In a sediment record from Strandsjön (Sweden) covering the past circa 140 years, we analyzed SOM geochemistry (δ13C, C:Natomic, organic carbon content) and δ13C of chitinous invertebrate remains in order to examine whether taxon-specific δ13C records could be developed for different invertebrate groups and whether these analyses provide insights into past changes of organic carbon sources for lacustrine invertebrates available in benthic and planktonic compartments of the lake. Invertebrate taxa included benthic chironomids (Chironomus, Chironomini excluding Chironomus, Tanytarsini, and Tanypodinae), filter-feeders on suspended particulate organic matter (Daphnia, Plumatella and Cristatella mucedo), and Rhabdocoela. δ13C of chironomid remains indicated periodic availability of 13C-depleted carbon sources in the benthic environment of the lake as δ13C values of the different chironomid taxa fluctuated simultaneously between -34.7 and -30.5‰ (VPDB). Daphnia and Bryozoa showed parallel changes in their δ13C values which did not coincide with variations in δ13C of chironomids, though, and a 2-3‰ decrease since circa AD 1960. The decrease in δ13C of Daphnia and Bryozoa could indicate a decrease in phytoplankton δ13C as a result of lower lake productivity, which is in accordance with historical information about the lake that suggests a shift to less eutrophic conditions after AD 1960. In contrast, Rhabdocoela cocoons were characterized by relatively high δ13C values (-30.4 to -28.2‰) that did not show a strong temporal trend, which could be related to the predatory feeding mode and wide prey spectrum of this organism group. The taxon-specific δ13C analyses of invertebrate remains indicated that different carbon sources were available for the benthic chironomid larvae than for the filter-feeding Daphnia and bryozoans. Our results therefore demonstrate that taxon-specific analysis of δ13C of organic invertebrate remains can provide complementary information to measurements on bulk SOM and that δ13C of invertebrate remains may allow the reconstruction of past changes in carbon sources and their δ13C in different habitats of lake ecosystems.
Resumo:
Notch signaling is an evolutionarily conserved pathway, which is fundamental for neuronal development and specification. In the last decade, increasing evidence has pointed out an important role of this pathway beyond embryonic development, indicating that Notch also displays a critical function in the mature brain of vertebrates and invertebrates. This pathway appears to be involved in neural progenitor regulation, neuronal connectivity, synaptic plasticity and learning/memory. In addition, Notch appears to be aberrantly regulated in neurodegenerative diseases, including Alzheimer's disease and ischemic injury. The molecular mechanisms by which Notch displays these functions in the mature brain are not fully understood, but are currently the subject of intense research. In this review, we will discuss old and novel Notch targets and molecular mediators that contribute to Notch function in the mature brain and will summarize recent findings that explore the two facets of Notch signaling in brain physiology and pathology.