886 resultados para Intestinal ischemia and reperfusion


Relevância:

50.00% 50.00%

Publicador:

Resumo:

We tested our hypothesis that postischemic conditioning (PostC) is effective in salvage of ischemic skeletal muscle from reperfusion injury and the mechanism involves inhibition of opening of the mitochondrial permeability transition pore (mPTP). In bilateral 8x13 cm pig latissimus dorsi muscle flaps subjected to 4 h ischemia, muscle infarction increased from 22+/-4 to 41+/-1% between 2 and 24 h reperfusion and remained unchanged at 48 (38+/-6%) and 72 (40+/-1%) h reperfusion (P

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Lactate has been shown to offer neuroprotection in several pathologic conditions. This beneficial effect has been attributed to its use as an alternative energy substrate. However, recent description of the expression of the HCA1 receptor for lactate in the central nervous system calls for reassessment of the mechanism by which lactate exerts its neuroprotective effects. Here, we show that HCA1 receptor expression is enhanced 24 hours after reperfusion in an middle cerebral artery occlusion stroke model, in the ischemic cortex. Interestingly, intravenous injection of L-lactate at reperfusion led to further enhancement of HCA1 receptor expression in the cortex and striatum. Using an in vitro oxygen-glucose deprivation model, we show that the HCA1 receptor agonist 3,5-dihydroxybenzoic acid reduces cell death. We also observed that D-lactate, a reputedly non-metabolizable substrate but partial HCA1 receptor agonist, also provided neuroprotection in both in vitro and in vivo ischemia models. Quite unexpectedly, we show D-lactate to be partly extracted and oxidized by the rodent brain. Finally, pyruvate offered neuroprotection in vitro whereas acetate was ineffective. Our data suggest that L- and D-lactate offer neuroprotection in ischemia most likely by acting as both an HCA1 receptor agonist for non-astrocytic (most likely neuronal) cells as well as an energy substrate.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Introduction : La prévention de la mort de cellules cardiaques contractiles suite à un épisode d'infarctus du myocarde représente le plus grand défi dans la récupération de la fonction cardiaque. On a démontré à maintes reprises que l'ocytocine (OT), l'hormone bien connue pour ses rôles dans le comportement social et reproductif et couramment utilisée dans l’induction de l’accouchement, diminue la taille de l'infarctus et améliore la récupération fonctionnelle du myocarde blessé. Les mécanismes de cette protection ne sont pas totalement compris. Objectif : Étudier les effets d'un traitement avec de l'ocytocine sur des cardiomyocytes isolés en utilisant un modèle in vitro qui simule les conditions d'un infarctus du myocarde. Méthodes : La lignée cellulaire myoblastique H9c2 a été utilisée comme modèle de cardiomyocyte. Pour simuler le dommage d'ischémie-reperfusion (IR), les cellules ont été placées dans un tampon ischémique et incubées dans une chambre anoxique pendant 2 heures. La reperfusion a été accomplie par la restauration du milieu de culture régulier dans des conditions normales d'oxygène. L'OT a été administrée en présence ou en absence d'inhibiteurs de kinases connues pour être impliquées dans la cardioprotection. La mortalité cellulaire a été évaluée par TUNEL et l'activité mitochondriale par la production de formazan pendant 1 à 4 heures de reperfusion. La microscopie confocale a servie pour localiser les structures cellulaires. Résultats : Le modèle expérimental de l'IR dans les cellules H9c2 a été caractérisé par une diminution dans la production de formazan (aux alentours de 50 à 70 % du groupe témoin, p < 0.001) et par l'augmentation du nombre de noyaux TUNEL-positif (11.7 ± 4.5% contre 1.3 ± 0.7% pour le contrôle). L'addition de l'OT (10-7 a 10-9 M) au commencement de la reperfusion a inversé les effets de l'IR jusqu'aux niveaux du contrôle (p < 0.001). L'effet protecteur de l'OT a été abrogé par : i) un antagoniste de l'OT ; ii) le knockdown de l'expression du récepteur à l'OT induit par le siRNA ; iii) la wortmannin, l'inhibiteur de phosphatidylinositol 3-kinases ; iv) KT5823, l'inhibiteur de la protéine kinase dépendante du cGMP (PKG); v) l'ODQ, un inhibiteur du guanylate cyclase (GC) soluble, et A71915, un antagoniste du GC membranaire. L'analyse confocale des cellules traitées avec OT a révélé la translocation du récepteur à l'OT et la forme phosphorylée de l'Akt (Thr 308, p-Akt) dans le noyau et dans les mitochondries. Conclusions : L'OT protège directement la viabilité des cardiomyocytes, lorsqu'elle est administrée au début de la reperfusion, par le déclenchement de la signalisation du PI3K, la phosphorylation de l'Akt et son trafic cellulaire. La cytoprotection médiée par l'OT implique la production de cGMP par les deux formes de GC.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Cochin University of Science And Technology

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Our laboratory demonstrated that training program attenuated the inflammatory responses in lung ischemia/reperfusion (IR). Considering the importance of the inflammatory responses on the cardiovascular system, we evaluate the effect of physical training on the vascular responsiveness and its underlying mechanism after lung IR. Male Wistar rats were submitted to run training and lung IR. Concentration-response curves for relaxing and contracting agents were obtained. Protein expressions of SOD-1 and p47(phox), plasma nitritre/nitrate (NO (x) (-) ) and interleukin 6 (IL-6) were evaluated. A decreased in the potency for acetylcholine and phenylephrine associated with an upregulation of the p47(phox) expression were found after Lung IR as well as an increase in IL-6 and NO (x) (-) levels. Run training attenuated the vascular dysfunction that was accompanied by reduction of the p47(phox) protein expression and IL-6 levels. Our findings show the beneficial effect of training on the vascular function that was associated with reduction in inflammatory response in lung IR.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Ischemia-reperfusion injury is the major cause of organ dysfunction or even nonfunction following transplantation. It can attenuate the long-term survival of transplanted organs. To evaluate the severity of renal ischemia injury determined by histology, we applied laser(442 nm and 532 nm) induced fluorescence (LIF), mitochondria respiration, and membrane swelling to evaluate 28 Wistar rats that underwent left kidney warm ischemia for 20, 40, 60, or 80 minutes. LIF performed before ischemia (control) was repeated at 20, 40, 60, and 80 minutes thereafter. We harvested left kidney tissue samples immediately after LIF determination for histology and mitochondrial analyses: state 3 and 4 respiration, respiration control rate (RCR), and membrane swelling. The association of optic spectroscopy with histological damage showed: LIF, 442 nm (r(2) = 0.39, P < .001) and 532 nm, (r(2) = 0.18, P = .003); reflecting laser/fluorescence-induced, 442 nm (r(2) = 0.20, P = .002) and 532 nm (r(2) = 0.004, P = .67). The associations between mitochondria function and tissue damage were: state 3 respiration (r(2) = 0.43, P = .0004), state 4 respiration (r(2) = 0.03, P = 0.38), RCR (r(2) = 0.28, P = .007), and membrane swelling (r(2) = 0.02, P = .43). The intensity of fluorescence emitted by tissue excited by laser, especially at a wave length of 442 nm, was determined in real time. Mitochondrial state 3 respiration and respiratory control ratio also exhibited good correlations with the grade of ischemic tissue damage.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Ischemia followed by reperfusion is known to negatively affect mitochondrial function by inducing a deleterious condition termed mitochondrial permeability transition. Mitochondrial permeability transition is triggered by oxidative stress, which occurs in mitochondria during ischemia-reperfusion as a result of lower antioxidant defenses and increased oxidant production. Permeability transition causes mitochondrial dysfunction and can ultimately lead to cell death. A drug able to minimize mitochondrial damage induced by ischemia-reperfusion may prove to be clinically effective. We aimed to analyze the effects of nicorandil, an ATP-sensitive potassium channel agonist and vasodilator, on mitochondrial function of rat hearts and cardiac HL-1 cells submitted to ischemia-reperfusion. Nicorandil decreased mitochondrial swelling and calcium uptake. It also decreased reactive oxygen species formation and thiobarbituric acid reactive substances levels, a lipid peroxidation biomarker. We thus confirm previous reports that nicorandil inhibits mitochondrial permeability transition and demonstrate that nicorandil inhibits this process by preventing oxidative damage and mitochondrial calcium overload induced by ischemia-reperfusion, resulting in improved cardiomyocyte viability. These results may explain the good clinical results obtained when using nicorandil in the treatment of ischemic heart disease.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

To evaluate the effect of sildenafil, administered prior to renal ischemia/reperfusion (I/R), by scintigraphy and histopathological evaluation in rats. Methods: Twenty-four rats were divided randomly into two groups. They received 0.1 ml of 99mTechnetium-etilenodicisteine intravenous, and a baseline (initial) renal scintigraphy was performed. The rats underwent 60 minutes of ischemia by left renal artery clamping. The right kidney was not manipulated. The sildenafil group (n=12) received orally 1 mg/kg of sildenafil suspension 60 minutes before ischemia. Treatment with saline 0.9% in the control group (n=12). Half of the rats was assessed after 24 hours and half after seven days I/R, with new renal scintigraphy to study differential function. After euthanasia, kidneys were removed and subjected to histopathological examination. For statistical evaluation, Student t and Mann-Whitney tests were used. Results: In the control group rats, the left kidneys had significant functional deficit, seven days after I/R, whose scintigraphic pattern was consistent with acute tubular necrosis, compared with the initial scintigraphy (p<0.05). Sildenafil treatment resulted in better differential function of the left kidneys 24h after reperfusion, compared with controls. Histopathologically, the left kidney of control rats (24 hours after I/R) showed a higher degree of cellular necrosis when compared with the sildenafil treated rats (p<0.05). Conclusion: Sildenafil had a protective effect in rat kidneys subjected to normothermic I/R, demonstrated by scintigraphy and histomorphometry

Relevância:

50.00% 50.00%

Publicador:

Resumo:

OBJETIVO: Avaliar o efeito da N-acetilcisteína na proteção renal contra lesão de isquemia/reperfusão, quando administrada logo após a indução anestésica, em ratos anestesiados com isoflurano. MÉTODOS: Dezoito ratos Wistar machos pesando mais que 300g foram anestesiados com isoflurano. A jugular interna direita e a carótida esquerda foram dissecadas e canuladas. Os animais foram distribuídos aleatoriamente em GAcetil, recebendo N-acetilcisteína por via intravenosa, 300mg/kg, e GIsot, solução salina. Foi realizada nefrectomia direita e clampeamento da artéria renal esquerda por 45 min. Os animais foram sacrificados após 48h, sendo colhidas amostras sanguíneas após a indução anestésica e ao sacrifício dos mesmos para avaliar a creatinina sérica. Realizou-se histologia renal. RESULTADOS: A variação da creatinina foi 2,33mg/dL ± 2,21 no GAcetil e 4,38mg/dL ± 2,13 no GIsot (p=0,074). Dois animais apresentaram necrose tubular intensa no GAcetil, comparados a cinco no GIsot. Apenas GAcetil apresentou animais livres de necrose tubular (dois) e degeneração tubular (um). CONCLUSÃO: Após isquemia/reperfusão renais, os ratos aos quais se administrou N-acetilcisteína apresentaram menor variação na creatinina sérica e lesões renais mais leves que o grupo controle.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Myocardial reperfusion injury is associated with the infiltration of blood-borne polymorphonuclear leukocytes. We have previous described the protection afforded by annexin 1 (ANXA1) in an experimental model of rat myocardial ischemia-reperfusion (IR) injury. We examined the 1) amino acid region of ANXA1 that retained the protective effect in a model of rat heart IR; 2) changes in endogenous ANXA1 in relation to the IR induced damage and after pharmacological modulation; and 3) potential involvement of the formyl peptide receptor (FPR) in the protective action displayed by ANXA1 peptides. Administration of peptide Ac2-26 at 0, 30, and 60 min postreperfusion produced a significant protection against IR injury, and this was associated with reduced myeloperoxidase activity and IL-1 beta levels in the infarcted heart. Western blotting and electron microscopy analyses showed that IR heart had increased ANXA1 expression in the injured tissue, associated mainly with the infiltrated leukocytes. Finally, an antagonist to the FPR receptor selectively inhibited the protective action of peptide ANXA1 and its derived peptides against IR injury. Altogether, these data provide further insight into the protective effect of ANXA1 and its mimetics and a rationale for a clinical use for drugs developed from this line of research.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Background. The metabolic and electrolyte changes were evaluated after various durations of cold and warm ischemia times to correlate ASA status with hemodynamic changes that may affect the severity of the reperfusion syndrome.Patients and methods. Sixty-one patients who underwent liver transplantation (OLT) were monitored by arterial pH, PaO2, PaCO2, HCO3, BE, K+, Ca2+, Na+, GL, and serial Ht at three specific times: after the skin incision (baseline), 10 minutes before reperfusion (T-2), and 10 minutes after reperfusion (T-3). Changes in metabolic parameters were correlated with ASA status, hemodynamic changes, time of OLT, as well as cold and warm ischemia times.Results. The pH in ASA IV patients was significantly lower at T-1 and T-3, and PCO2 higher in ASA V at T-1. A significant correlation was observed between pH, PaCO2, HCO3 BE, Na+, Ca2+, and glucose with the phase of the procedure. The pH and HCO3 decreased significantly from T-1 and T-2, increasing during T-3. Ca2+ fell from T-1 to T-2 increasing in T-3. Mean glucose and sodium levels increase from T-1 to T-3. Mean BE dropped from T-1 to T-2 and increased at T-3 without a significant correlation between the metabolic parameters in any phase of the study and the cold or warm ischemia times. Patients with a high ASA status showed an increased risk for cardiovascular collapse after reperfusion.Conclusions. Patients with advanced ASA status are more prone to metabolic and acid-base disturbances during reperfusion, without any relation to the cold or warm ischemia times. High ASA status shows an increased risk for cardiovascular collapse after reperfusion.