721 resultados para Interplanetary spacecraft


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An experimental investigation of high-enthalpy flow over a toroidal ballute (balloon/parachute) was conducted in an expansion tube facility. The ballute, proposed for use in a number of future aerocapture missions, involves the deployment of a large toroidal-shaped inflatable parachute behind a space vehicle to generate drag on passing through a planetary atmosphere, thus, placing the spacecraft in orbit. A configuration consisting of a spherical spacecraft, followed by a toroid, was tested in a superorbital facility. Measurements at moderate-enthalpy conditions (15-20 MJ/kg) in nitrogen and carbon dioxide showed peak heat transfer rates of around 20 MW/m(2) on the toroid. At higher enthalpies (>50 MJ/kg) in nitrogen, carbon dioxide, and a hydrogen-neon mixture, heat transfer rates above 100 MW/m(2) were observed. Imaging using near-resonant holographic interferometry showed that the flows were steady except when the opening of the toroid was blocked.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The non-linear motions of a gyrostat with an axisymmetrical, fluid-filled cavity are investigated. The cavity is considered to be completely filled with an ideal incompressible liquid performing uniform rotational motion. Helmholtz theorem, Euler's angular momentum theorem and Poisson equations are used to develop the disturbed Hamiltonian equations of the motions of the liquid-filled gyrostat subjected to small perturbing moments. The equations are established in terms of a set of canonical variables comprised of Euler angles and the conjugate angular momenta in order to facilitate the application of the Melnikov-Holmes-Marsden (MHM) method to investigate homoclinic/heteroclinic transversal intersections. In such a way, a criterion for the onset of chaotic oscillations is formulated for liquid-filled gyrostats with ellipsoidal and torus-shaped cavities and the results are confirmed via numerical simulations. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Melnikov's method is used to analytically predict the onset of chaotic instability in a rotating body with internal energy dissipation. The model has been found to exhibit chaotic instability when a harmonic disturbance torque is applied to the system for a range of forcing amplitude and frequency. Such a model may be considered to be representative of the dynamical behavior of a number of physical systems such as a spinning spacecraft. In spacecraft, disturbance torques may arise under malfunction of the control system, from an unbalanced rotor, from vibrations in appendages or from orbital variations. Chaotic instabilities arising from such disturbances could introduce uncertainties and irregularities into the motion of the multibody system and consequently could have disastrous effects on its intended operation. A comprehensive stability analysis is performed and regions of nonlinear behavior are identified. Subsequently, the closed form analytical solution for the unperturbed system is obtained in order to identify homoclinic orbits. Melnikov's method is then applied on the system once transformed into Hamiltonian form. The resulting analytical criterion for the onset of chaotic instability is obtained in terms of critical system parameters. The sufficient criterion is shown to be a useful predictor of the phenomenon via comparisons with numerical results. Finally, for the purposes of providing a complete, self-contained investigation of this fundamental system, the control of chaotic instability is demonstated using Lyapunov's method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An algorithm for suppressing the chaotic oscillations in non-linear dynamical systems with singular Jacobian matrices is developed using a linear feedback control law based upon the Lyapunov-Krasovskii (LK) method. It appears that the LK method can serve effectively as a generalised method for the suppression of chaotic oscillations for a wide range of systems. Based on this method, the resulting conditions for undisturbed motions to be locally or globally stable are sufficient and conservative. The generalized Lorenz system and disturbed gyrostat equations are exemplified for the validation of the proposed feedback control rule. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The occurrence of chaotic instabilities is investigated in the swing motion of a dragline bucket during operation cycles. A dragline is a large, powerful, rotating multibody system utilised in the mining industry for removal of overburden. A simplified representative model of the dragline is developed in the form of a fundamental non-linear rotating multibody system with energy dissipation. An analytical predictive criterion for the onset of chaotic instability is then obtained in terms of critical system parameters using Melnikov's method. The model is shown to exhibit chaotic instability due to a harmonic slew torque for a range of amplitudes and frequencies. These chaotic instabilities could introduce irregularities into the motion of the dragline system, rendering the system difficult to control by the operator and/or would have undesirable effects on dragline productivity and fatigue lifetime. The sufficient analytical criterion for the onset of chaotic instability is shown to be a useful predictor of the phenomenon under steady and unsteady slewing conditions via comparisons with numerical results. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For optimum utilization of satellite-borne instrumentation, it is necessary to know precisely the orbital position of the spacecraft. The aim of this thesis is therefore two-fold - firstly to derive precise orbits with particular emphasis placed on the altimetric satellite SEASAT and secondly, to utilize the precise orbits, to improve upon atmospheric density determinations for satellite drag modelling purposes. Part one of the thesis, on precise orbit determinations, is particularly concerned with the tracking data - satellite laser ranging, altimetry and crossover height differences - and how this data can be used to analyse errors in the orbit, the geoid and sea-surface topography. The outcome of this analysis is the determination of a low degree and order model for sea surface topography. Part two, on the other hand, mainly concentrates on using the laser data to analyse and improve upon current atmospheric density models. In particular, the modelling of density changes associated with geomagnetic disturbances comes under scrutiny in this section. By introducing persistence modelling of a geomagnetic event and solving for certain geomagnetic parameters, a new density model is derived which performs significantly better than the state-of-the-art models over periods of severe geomagnetic storms at SEASAT heights. This is independently verified by application of the derived model to STARLETTE orbit determinations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The technique of Satellite Laser Ranging is today a mature, important tool with applications in many area of geodynamics, geodesy and satellite dynamics. A global network of some 40 stations regularly obtains range observations with sub-cm precision to more than twelve orbiting spacecraft. At such levels of precision it is important to minimise potential sources of range bias in the observations, and part of the thesis is a study of subtle effects caused by the extended nature of the arrays of retro-reflectors on the satellites. We develop models that give a precise correction of the range measurements to the centres of mass of the geodetic satellites Lageos and Etalon, appropriate to a variety of different ranging systems, and use the Etalon values, which were not determined during pre-launch tests, in an extended orbital analysis. We have fitted continuous 2.5 year orbits to range observations of the Etalons from the global network of stations, and analysed the results by mapping the range residuals from these orbits into equivalent corrections to orbital elements over short time intervals. From these residuals we have detected and studied large un-modelled along-track accelerations associated with periods during which the satellites are undergoing eclipse by the Earth's shadow. We also find that the eccentricity residuals are significantly different for the two satellites, with Etalon-2 undergoing a year-long eccentricity anomaly similar in character to that experienced at intervals by Lageos-1. The nodal residuals show that the satellites define a very stable reference frame for Earth rotation determination, with very little drift-off during the 2.5 year period. We show that an analysis of more than about eight years of tracking data would be required to derive a significant value for 2. The reference frame defined by the station coordinates derived from the analyses shows very good agreement with that of ITRF93.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Substantial altimetry datasets collected by different satellites have only become available during the past five years, but the future will bring a variety of new altimetry missions, both parallel and consecutive in time. The characteristics of each produced dataset vary with the different orbital heights and inclinations of the spacecraft, as well as with the technical properties of the radar instrument. An integral analysis of datasets with different properties offers advantages both in terms of data quantity and data quality. This thesis is concerned with the development of the means for such integral analysis, in particular for dynamic solutions in which precise orbits for the satellites are computed simultaneously. The first half of the thesis discusses the theory and numerical implementation of dynamic multi-satellite altimetry analysis. The most important aspect of this analysis is the application of dual satellite altimetry crossover points as a bi-directional tracking data type in simultaneous orbit solutions. The central problem is that the spatial and temporal distributions of the crossovers are in conflict with the time-organised nature of traditional solution methods. Their application to the adjustment of the orbits of both satellites involved in a dual crossover therefore requires several fundamental changes of the classical least-squares prediction/correction methods. The second part of the thesis applies the developed numerical techniques to the problems of precise orbit computation and gravity field adjustment, using the altimetry datasets of ERS-1 and TOPEX/Poseidon. Although the two datasets can be considered less compatible that those of planned future satellite missions, the obtained results adequately illustrate the merits of a simultaneous solution technique. In particular, the geographically correlated orbit error is partially observable from a dataset consisting of crossover differences between two sufficiently different altimetry datasets, while being unobservable from the analysis of altimetry data of both satellites individually. This error signal, which has a substantial gravity-induced component, can be employed advantageously in simultaneous solutions for the two satellites in which also the harmonic coefficients of the gravity field model are estimated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The uncertainty of measurements must be quantified and considered in order to prove conformance with specifications and make other meaningful comparisons based on measurements. While there is a consistent methodology for the evaluation and expression of uncertainty within the metrology community industry frequently uses the alternative Measurement Systems Analysis methodology. This paper sets out to clarify the differences between uncertainty evaluation and MSA and presents a novel hybrid methodology for industrial measurement which enables a correct evaluation of measurement uncertainty while utilising the practical tools of MSA. In particular the use of Gage R&R ANOVA and Attribute Gage studies within a wider uncertainty evaluation framework is described. This enables in-line measurement data to be used to establish repeatability and reproducibility, without time consuming repeatability studies being carried out, while maintaining a complete consideration of all sources of uncertainty and therefore enabling conformance to be proven with a stated level of confidence. Such a rigorous approach to product verification will become increasingly important in the era of the Light Controlled Factory with metrology acting as the driving force to achieve the right first time and highly automated manufacture of high value large scale products such as aircraft, spacecraft and renewable power generation structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Every space launch increases the overall amount of space debris. Satellites have limited awareness of nearby objects that might pose a collision hazard. Astrometric, radiometric, and thermal models for the study of space debris in low-Earth orbit have been developed. This modeled approach proposes analysis methods that provide increased Local Area Awareness for satellites in low-Earth and geostationary orbit. Local Area Awareness is defined as the ability to detect, characterize, and extract useful information regarding resident space objects as they move through the space environment surrounding a spacecraft. The study of space debris is of critical importance to all space-faring nations. Characterization efforts are proposed using long-wave infrared sensors for space-based observations of debris objects in low-Earth orbit. Long-wave infrared sensors are commercially available and do not require solar illumination to be observed, as their received signal is temperature dependent. The characterization of debris objects through means of passive imaging techniques allows for further studies into the origination, specifications, and future trajectory of debris objects. Conclusions are made regarding the aforementioned thermal analysis as a function of debris orbit, geometry, orientation with respect to time, and material properties. Development of a thermal model permits the characterization of debris objects based upon their received long-wave infrared signals. Information regarding the material type, size, and tumble-rate of the observed debris objects are extracted. This investigation proposes the utilization of long-wave infrared radiometric models of typical debris to develop techniques for the detection and characterization of debris objects via signal analysis of unresolved imagery. Knowledge regarding the orbital type and semi-major axis of the observed debris object are extracted via astrometric analysis. This knowledge may aid in the constraint of the admissible region for the initial orbit determination process. The resultant orbital information is then fused with the radiometric characterization analysis enabling further characterization efforts of the observed debris object. This fused analysis, yielding orbital, material, and thermal properties, significantly increases a satellite's Local Area Awareness via an intimate understanding of the debris environment surrounding the spacecraft.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To identify the relationship between GPS scintillation in Natal-RN (Brazil) and geomagnetic disturbances of any intensities and variations, this work made analysis of the ionospheric behavior and magnetic indexes (Dst , AE and Bz of the interplanetary magnetic field) concerning to different periods of the solar cycle between 2000 and 2014. Part of the data of this research originated at the UFRN observatory, from a GEC Plessey board connected to an ANP -C 114 antenna, modified by Cornell University’s Space group Plasma Physics in order to operate the ScintMon, a GPS monitoring program. This study, therefore, found several cases of inhibited scintillations after the main phase of magnetic storms, a fact that, along with others, corroborated with categorization of Aarons (1991) and models of disturbed dynamo (according to Bonelli, 2008) and over-shielding penetration, defended by Kelley et al. (1979) and Abdu (2011) [4]. In addition to these findings, different morphologies were noted in such disruptions in the GPS signal in accordance with previous magnetic activities. It also found a moderate relationship (R2 = 0.52) between the Dst rate (concerning to specific time) and the average of S4 through a polynomial function. This finding therefore, corroborating Ilma et al. (2012) [17], is an important evidence that the scintillation GPS are not directly controlled by magnetic induction of storms. Completing this work, this relation did show itself as a way of partial predicting of scintillations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L'ambiente di questa tesi è quello del Delay and Disruption Tolerant Networks (DTN), un'architettura di rete di telecomunicazioni avente come obiettivo le comunicazioni tra nodi di reti dette “challenged”, le quali devono affrontare problemi come tempi di propagazione elevati, alto tasso di errore e periodi di perdita delle connessioni. Il Bunde layer, un nuovo livello inserito tra trasporto e applicazione nell’architettura ISO/OSI, ed il protocollo ad esso associato, il Bundle Protocol (BP), sono stati progettati per rendere possibili le comunicazioni in queste reti. A volte fra la ricezione e l’invio può trascorrere un lungo periodo di tempo, a causa della indisponibilità del collegamento successivo; in questo periodo il bundle resta memorizzato in un database locale. Esistono varie implementazioni dell'architettura DTN come DTN2, implementazione di riferimento, e ION (Interplanetary Overlay Network), sviluppata da NASA JPL, per utilizzo in applicazioni spaziali; in esse i contatti tra i nodi sono deterministici, a differenza delle reti terrestri nelle quali i contatti sono generalmente opportunistici (non noti a priori). Per questo motivo all’interno di ION è presente un algoritmo di routing, detto CGR (Contact Graph Routing), progettato per operare in ambienti con connettività deterministica. È in fase di ricerca un algoritmo che opera in ambienti non deterministici, OCGR (Opportunistic Contact Graph Routing), che estende CGR. L’obiettivo di questa tesi è quello di fornire una descrizione dettagliata del funzionamento di OCGR, partendo necessariamente da CGR sul quale è basato, eseguire dei test preliminari, richiesti da NASA JPL, ed analizzarne i risultati per verificare la possibilità di utilizzo e miglioramento dell’algoritmo. Sarà inoltre descritto l’ambiente DTN e i principali algoritmi di routing per ambienti opportunistici. Nella parte conclusiva sarà presentato il simulatore DTN “The ONE” e l’integrazione di CGR e OCGR al suo interno.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At four sites in the central equatorial Pacific Ocean the flux of extraterrestrial 3He, determined using the excess 230Th profiling method, is 8 * 10**-13 cm**3 STP/cm**2/ka. This supply rate is constant to within 30%. At these same sites, however, the burial rate of 3He, determined using chronostratigraphic accumulation rates, varies by more than a factor of 3. The lowest burial rates, which occur north of the equator at 1°N, 139°W are lower than the global average rate of supply of extraterrestrial 3He by 20% and indicate that sediment winnowing may have occurred. The highest burial rates, which are recorded at the equator and at 2°S, are higher than the rate of supply of extraterrestrial 3He by 100%, and these provide evidence for sediment focusing. By analyzing several proxies measured in core PC72 sediments spanning the past 450 kyr we demonstrate that periods of maximum burial rates of 230Th, 3He, 10Be, Ti, and barite, with a maximum peak-to-trough amplitude of a factor of 6, take place systematically during glacial time. However, the ratio of any one proxy to another is constant to within 30% over the entire length of the records. Given that each proxy represents a different source (234U decay in seawater, interplanetary dust, upper atmosphere, continental dust, or upper ocean), our preferred interpretation for the covariation is that the climate-related changes in burial rates are driven by changes in sediment focusing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Spanish Space Weather Service SeNMEs, www.senores.es, is a portal created by the SRG-SW of the Universidad de Alcala, Spain, to meet societal needs of near real-time space weather services. This webpage-portal is divided in different sections to fulfill users needs about space weather effects: radio blackouts, solar energetic particle events, geomagnetic storms and presence of geomagnetically induced currents. In less than one year of activity, this service has released a daily report concerning the solar current status and interplanetary medium, informing about the chances of a solar perturbation to hit the Earth's environment. There are also two different forecasting tools for geomagnetic storms, and a daily ionospheric map. These tools allow us to nowcast a variety of solar eruptive events and forecast geomagnetic storms and their recovery, including a new local geomagnetic index, LDin, along with some specific new scaling. In this paper we also include a case study analysed by SeNMEs. Using different high resolution and cadence data from space-borne solar telescopes SDO, SOHO and GOES, along with ionospheric and geomagnetic data, we describe the Sun-Earth feature chain for the event.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Federal Aviation Administration (FAA) Office of Commercial Space Transportation (AST) has set specific rules and generic guidelines to cover experimental and operational flights by industry forerunners such as Virgin Galactic and XCOR. One such guideline Advisory Circular (AC) 437.55-1[1] contains exemplar hazard analyses for spacecraft designers and operators to follow under an experimental permit. The FAA's rules and guidelines have also been ratified in a report to the United States Congress, Analysis of Human Space Flight Safety[2] which cites that the industry is too immature and has 'insufficient data' to be proscriptive and that 'defining a minimum set of criteria for human spaceflight service providers is potentially problematic' in order not to 'stifle the emerging industry'. The authors of this paper acknowledge the immaturity of the industry and discuss the problematic issues that Design Organisations and Operators now face.