708 resultados para Intermetallic precipitates


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the investigation of the off-stoichiometry and site-occupancy of κ-carbide precipitates within an austenitic (γ), Fe-29.8Mn-7.7Al-1.3C (wt.%) alloy using a combination of atom probe tomography and density functional theory. The chemical composition of the κ-carbides as measured by atom probe tomography indicates depletion of both interstitial C and substitutional Al, in comparison to the ideal stoichiometric L′12 bulk perovskite. In this work we demonstrate that both these effects are coupled. The off-stoichiometric concentration of Al can, to a certain extent, be explained by strain caused by the κ/γ mismatch, which facilitates occupation of Al sites in κ-carbide by Mn atoms (MnγAl anti-site defects). The large anti-site concentrations observed by our experiments, however, can only be stabilized if there are C vacancies in the vicinity of the anti-site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of rapid solidification processes such as direct strip casting (DSC) is a good way to refine the Fe-intermetallics and decrease their detrimental effects. DSC creates out-ofequilibrium supersaturated microstructures. In this work, we explore the precipitation phenomena in direct strip cast Al-Fe and Al-Cu-Fe alloys and related corrosion and mechanical properties. The precipitates are characterised with differential scanning calorimetry and transmission electron microscopy. The corrosion performances are evaluated with immersion tests and weight loss measurements and the yield strength and ductility are estimated with tensile tests. A strong correlation between the microstructure and the bulk properties is revealed with a significant improvement of properties of DSC alloys.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper examines the impact of coiling temperature and duration on the phase transformation and precipitation behavior of a low carbon and low niobium direct strip cast steel. Coiling was performed at three carefully chosen temperatures: (1) in the ferrite (600°C), (2) during the austenite decomposition (700°C) and (3) in the austenite (850°C). The coiling conditions were found to strongly affect the final microstructure and hardness response, thus highlighting the necessity to judiciously design the coiling treatment. Optical microscopy, and scanning and transmission electron microscopy were used to characterize the microstructural constituents (polygonal ferrite, bainite and pearlite) and the NbC precipitates. Vickers macrohardness measurements are utilized to quantify the mechanical properties. The differences in hardening kinetics for the three different temperatures are shown to come from a complex combination of strengthening contributions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Al and Mg machining chip blends were compacted by equal-channel angular pressing with back pressure. By varying the weight fraction of the constituent materials, temperature and processing route, as well as employing subsequent heat treatment, the microstructure and the mechanical properties of the compact were varied. The width of the interdiffusion zone and the formation of intermetallic phases near the interfaces between the two metals were studied by energy-dispersive X-ray spectroscopy and nanoindentation. It was shown that substantial improvement of mechanical properties, such as an increase of strength, strain-hardening capability and ductility, can be obtained. This is achieved by changing the processing parameters of equal-channel angular pressing and the annealing temperature, as well as by optimising the weight fraction of the constituent metals. © 2013 Springer Science+Business Media New York.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Mg-5 wt.%Al-2 wt.%Nd alloy has been prepared by a powder metallurgical route using a blend of two dissimilar alloy powders. The initial consolidation of the powders was achieved through a single equal channel angular extrusion pass at 150 °C. After heat treatment at temperatures between 420 °C and 530 °C, it was possible to produce a microstructure that consisted of a uniform distribution of Al3Nd and Al11Nd3 precipitates in a magnesium matrix. These precipitates displayed distinct orientation relationships with the matrix. The size and shape of the precipitates depended on the heat treatment temperature and time. © 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hot deformation behavior and microstructure evolution of a coarse grain metastable beta titanium alloy (Ti-5Al-5Mo-5V-3Cr) was investigated using uniaxial compression testing followed by a subsequent beta annealing treatment. Compression testing was carried out at 720 °C and strain rates between 0.001-10 s-1 on samples with beta annealed condition and aged microstructure containing high volume fraction of relatively large alpha precipitates. The peak load of the aged samples are higher than the non-aged specimens but they show rather similar steady state flow stress. The subsequent beta annealing treatment on the compressed aged samples leads to breaking down the ingot microstructure and formation of a fully recrystallized beta phase with massive grain refinement (order of millimeter to ∼100 μm). However, after annealing such grain refinement is not seen for the non-aged samples except at high strain rates that showed partial and local recrystallization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An effect of alloying element content on mechanical properties and precipitate formation in Mg-RE alloys was studied for Mg-8Gd-4Y- 1Zn-0.4Zr (wt%) and Mg-10Gd-5Y-1.8Zn-0.4Zr (wt%). It is shown that small variations in the alloying element concentration can be used to manipulate the alloy microstructure and precipitate formation towards eliminating the asymmetry (tension/compression) and anisotropy of yield stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of ageing on deformation twinning in an extruded Mg-6Sn-3Zn-0.04Na alloy is investigated. In-situ compression tests have been carried out using high resolution synchrotron X-Ray Diffraction (XRD) to measure the influence of precipitates on twining activity. Synchrotron experiments revealed the increase in the critical resolved shear stress of twinning with ageing. The compressive yield strength (along the extrusion direction) of the aged sample increased by ∼ 150% over the non-aged specimen. To obtain statistical insight into the twinning activity, the microstructure of the non-aged and aged samples (200°C, 24 hours) deformed up to ∼1% plastic strain was studied using optical microscopy. A higher number of thinner twins were observed in the microstructure of the aged sample compared to the non-aged sample.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

 In this study, nano-indentation technique is employed to investigate the initiation of basal slip and extension twin separately in magnesium. The present method prove useful in studying the influence of solid solution and precipitates on these two deformation modes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of a simulated coiling treatment on a strip cast Nb-containing steel has been investigated. A lath ferritic supersaturated microstructure was observed in the as-cast condition with no coiling. The microstructure remained lath like during coiling at high temperature (850 °C) and the formation of chemically complex Nb-rich precipitates containing C, N, Si and S was observed. Coiling at an intermediate temperature (700 °C) caused the formation of polygonal ferrite with a dendritic morphology due to chemical micro-segregation. The polygonal ferrite contained Nb(C,N) precipitates. The microstructure remained lath like at the lowest coiling temperature (600 °C). In the latter case the precipitation of Nb-rich clusters was observed, and atom probe tomography revealed them to be ∼85% Fe. Small angle neutron scattering and transmission electron microscopy were used to quantify precipitation kinetics during coiling and the mechanical properties were evaluated with a shear punch apparatus. A yield strength model was developed to describe the observed mechanical behaviour, and this showed that the two largest contributors to strength were the bainitic microstructure and the Nb-rich precipitates. Strategies to further strengthen these materials are suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present paper reports synthesis of novel AlFeCuCrMgx (x = 0, 0.5, 1, 1.7 mol) high entropy alloys (HEAs) by mechanical alloying (MA) followed by spark plasma sintering (SPS). Phase evolution, microstructure and phase transformation study of the sintered alloy were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). XRD of the sintered alloys revealed the formation of two BCC phases in the AlFeCuCr alloy and more complex structures in AlFeCuCrMgx (x = 0.5, 1, 1.7) alloys containing AlFe type, BCC, and Cu2Mg type phases. TEM bright field image and selected area diffraction pattern (SAED) revealed the formation of tetragonal closed packed Cr precipitates within the Cu2Mg phase of AlFeCuCrMgx alloys (x = 0.5, 1, 1.7). DSC study of the alloys revealed no substantial phase change up to 1000 °C for AlFeCuCr alloy. Although, for x = 0.5, 1 & 1.7 phase transformation occurs at 818 °C, 885 °C & 483 °C respectively. Mg content had a significant effect on hardness, increasing to a peak hardness of 853 HVN for AlFeCuCrMg0.5 alloy before decreasing to 533 HVN for the AlFeCuCrMg1.7 alloy. The phase evolution in these alloys has been considered using thermodynamic parameters, and the structure-property relationship has also been proposed by conventional strengthening mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our previous studies have demonstrated that Mg-Zr-Sr alloys can be anticipated as excellent biodegradable implant materials for load-bearing applications. In general, rare earth elements (REEs) are widely used in magnesium (Mg) alloys with the aim of enhancing the mechanical properties of Mg-based alloys. In this study, the REE holmium (Ho) was added to an Mg-1Zr-2Sr alloy at different concentrations of Mg1Zr2SrxHo alloys (x = 0, 1, 3, 5 wt. %) and the microstructure, mechanical properties, degradation behaviour and biocompatibility of the alloys were systematically investigated. The results indicate that the addition of Ho to Mg1Zr2Sr led to the formation of the intermetallic phases MgHo3, Mg2Ho and Mg17Sr2 which resulted in enhanced mechanical strength and decreased degradation rates of the Mg-Zr-Sr-Ho alloys. Furthermore, Ho addition (≤5 wt. %) to Mg-Zr-Sr alloys led to enhancement of cell adhesion and proliferation of osteoblast cells on the Mg-Zr-Sr-Ho alloys. The in vitro biodegradation and the biocompatibility of the Mg-Zr-Sr-Ho alloys were both influenced by the Ho concentration in the Mg alloys; Mg1Zr2Sr3Ho exhibited lower degradation rates than Mg1Zr2Sr and displayed the best biocompatibility compared with the other alloys.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silver and mercury are both dissolved in cyanide leaching and the mercury co-precipitates with silver during metal recovery. Mercury must then be removed from the silver/mercury amalgam by vaporizing the mercury in a retort, leading to environmental and health hazards. The need for retorting silver can be greatly reduced if mercury is selectively removed from leaching solutions. Theoretical calculations were carried out based on the thermodynamics of the Ag/Hg/CN- system in order to determine possible approaches to either preventing mercury dissolution, or selectively precipitating it without silver loss. Preliminary experiments were then carried out based on these calculations to determine if the reaction would be spontaneous with reasonably fast kinetics. In an attempt to stop mercury from dissolving and leaching the heap leach, the first set of experiments were to determine if selenium and mercury would form a mercury selenide under leaching conditions, lowering the amount of mercury in solution while forming a stable compound. From the results of the synthetic ore experiments with selenium, it was determined that another effect was already suppressing mercury dissolution and the effect of the selenium could not be well analyzed on the small amount of change. The effect dominating the reactions led to the second set of experiments in using silver sulfide as a selective precipitant of mercury. The next experiments were to determine if adding solutions containing mercury cyanide to un-leached silver sulfide would facilitate a precipitation reaction, putting silver in solution and precipitating mercury as mercury sulfide. Counter current flow experiments using the high selenium ore showed a 99.8% removal of mercury from solution. As compared to leaching with only cyanide, about 60% of the silver was removed per pass for the high selenium ore, and around 90% for the high mercury ore. Since silver sulfide is rather expensive to use solely as a mercury precipitant, another compound was sought which could selectively precipitate mercury and leave silver in solution. In looking for a more inexpensive selective precipitant, zinc sulfide was tested. The third set of experiments did show that zinc sulfide (as sphalerite) could be used to selectively precipitate mercury while leaving silver cyanide in solution. Parameters such as particle size, reduction potential, and amount of oxidation of the sphalerite were tested. Batch experiments worked well, showing 99.8% mercury removal with only ≈1% silver loss (starting with 930 ppb mercury, 300 ppb silver) at one hour. A continual flow process would work better for industrial applications, which was demonstrated with the filter funnel set up. Funnels with filter paper and sphalerite tested showed good mercury removal (from 31 ppb mercury and 333 ppb silver with a 87% mercury removal and 7% silver loss through one funnel). A counter current flow set up showed 100% mercury removal and under 0.1% silver loss starting with 704 ppb silver and 922 ppb mercury. The resulting sphalerite coated with mercury sulfide was also shown to be stable (not releasing mercury) under leaching tests. Use of sphalerite could be easily implemented through such means as sphalerite impregnated filter paper placed in currently existing processes. In summary, this work focuses on preventing mercury from following silver through the leaching circuit. Currently the only possible means of removing mercury is by retort, creating possible health hazards in the distillation process and in transportation and storage of the final mercury waste product. Preventing mercury from following silver in the earlier stages of the leaching process will greatly reduce the risk of mercury spills, human exposure to mercury, and possible environmental disasters. This will save mining companies millions of dollars from mercury handling and storage, projects to clean up spilled mercury, and will result in better health for those living near and working in the mines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A research program focused on understanding the intergranular corrosion (IGC) and stress corrosion cracking (SCC) behavior of AA6005A aluminum extrusions is presented in this dissertation. The relationship between IGC and SCC susceptibility and the mechanisms of SCC in AA6005A extrusions were studied by examining two primary hypotheses. IGC susceptibility of the elongated grain structure in AA6005A exposed to low pH saltwater was found to depend primarily on the morphology of Cu-containing precipitates adjacent to the grain boundaries in the elongated grain structure. IGC susceptibility was observed when a continuous (or semi-continuous) film of Cu-containing phase was present along the grain boundaries. When this film coarsened to form discrete Cu-rich precipitates, no IGC was observed. The morphology of the Cu-rich phase depended on post-extrusion heat treatment. The rate of IGC penetration in the elongated grain structure of AA6005A-T4 and AA6005A-T6 extrusions was found to be anisotropic with IGC propagating most rapidly along the extrusion direction, and least rapidly along the through thickness direction. A simple 3-dimensional geometric model of the elongated grain structure was accurately described the observed IGC anisotropy, therefore it was concluded that the anisotropic IGC susceptibility in the elongated grain structure was primarily due to geometric elongation of the grains. The velocity of IGC penetration along all directions in AA6005A-T6 decreased with exposure time. Characterization of the local environment within simulated corrosion paths revealed that a pH gradient existed between the tip of the IGC path and the external environment. Knowledge of the local environment within an IGC path allowed development of a simple model based on Fick's first law that considered diffusion of Al3+ away from the tip of the IGC path. The predicted IGC velocity agreed well with the observed IGC velocity, therefore it was determined that diffusion of Al3+ was the primary factor in determining the velocity of IGC penetration. The velocity of crack growth in compact tensile (CT) specimens of AA6005A-T6 extrusion exposed to 3.5% NaCl at pH = 1.5 was nearly constant over a range of applied stress intensities, exposure times, and crack lengths. The crack growth behavior of CT specimens of AA6005A-T6 extrusion exposed to a solution of 3.5% NaCl at pH = 2.0 exhibited similar behavior, but the crack velocity was ~10.5X smaller than that those exposed to a solution at pH =1.5. Analysis of the local stress state and polarization behavior at the crack tip predicted that increasing the pH of the bulk solution from 1.5 to 2.0 would decrease the corrosion current density at the crack tip by approximately 11.8X. This predicted decrease in corrosion current density was in reasonable agreement with the observed decrease in SCC velocity associated with increasing the solution pH from 1.5 to 2.0. The agreement between the predicted and observed SCC velocities suggested that the electrochemical reactions controlling SCC in AA6005A-T6 extrusions are ultimately controlled by the pH gradient that exists between the crack tip and external environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A family of bulk and SBA-15 supported peroxo niobic acid sols were prepared by peptisation of niobic acid precipitates with H2O2 as heterogeneous catalysts for aqueous phase glucose and fructose conversion to 5-hydroxymethylfurfural (5-HMF). Niobic acid nanoparticles possess a high density of Brønsted and Lewis acid sites, conferring good activity towards glucose and fructose conversion, albeit with modest 5-HMF yields under mild reaction conditions (100 °C). Thermally-induced niobia crystallisation suppresses solid acidity and activity. Nanoparticulate niobic acid dispersed over SBA-15 exhibits pure Brønsted acidity and an enhanced Turnover Frequency for fructose dehydration.