966 resultados para Intensity of grazing
Resumo:
LiBa2B5O10:RE3+ (RE = Dy, Tb and Tm) was synthesized by the method of high-temperature solid-state reaction and the thermoluminescence (TL) properties of the samples under the irradiation of the gamma-ray were studied. The result showed that Dy3+ ion was the most efficient activator. When the concentration of Dy3+ was 2 mol%, LiBa2B5O10:Dy3+ exhibited a maximum TL output. The kinetic parameter of LiBa2B5O10:0.02Dy was estimated by the peak shape method, for which the average activation energy was 0.757 eV and the frequency factor was 1.50 x 10(7) s(-1). By the three-dimensional (3D) TL spectrum, the TL of the sample was contributed to the characteristic f-f transition of DY3+. The dose-response of LiBa2B5O10:0.02Dy to gamma-ray was linear in the range from 1 to 1000 mGy. In addition, the decay of the TL intensity of LiBa2B5O10:0.02Dy was also investigated.
Resumo:
M2B5O9X: Re(M = Ca, Sr, Ba; X = Cl, Br; Re = Eu, Th) phosphors were synthesized via solid state method. The products were characterized with X-ray powder diffraction and luminescence spectrometer. The luminescent properties as well. as the influences of the matrix composition and other doping ions on the luminescence of the rare earth ions of the co-doped phosphors were investigated. The coexistence of Eu3+, Eu2+ and Th3+ were observed in these matrices. The phenomenon may be explained by the electron transfer theory. The sensitization of Ce3+ ion improves the intensity of emission of Eu2+, and Tb3+. The competition between electron transfer among conjugate rare earth ions and energy migration might be the reasons for the observation. We predict a novel trichromatic phosphor co-doped with Eu3+ Tb3+ in M2B5O9X.
Resumo:
Near infrared (NIR) light emitting diodes employing composites of an IR fluorescent dye, CdSe/CdScore/shell semiconductor quantum dots and poly( N-vinylcarbazole) (PVK) have been demonstrated. The device, with a configuration of indium-tin-oxide (ITO)//PEDOT:PSS//PVK:NIR Dye:CdSe/CdS//Al, had a turn-on voltage of 7 V, emitted the NIR light with a maximum at 890 nm and the irradiance intensity of 96 mu W. The electroluminescence efficiency of 0.02% was achieved at a current density of 13 mA cm(-2).
Resumo:
LaF3 : Eu3+ (5.0 mol-% EU3+) nanodisks with perfect crystallinity were successfully synthesized by a simple method. The synthesis was carried out in an aqueous solution at room temperature without the use of templates or organic additives, The mechanism of formation of the nanodisks was explored, and the fluoride source (KBF4) is believed to play a key role in controlling the morphology of the final product. Furthermore, the size of the disk can be simply moderated by varying the concentration of the initial reactants. The room-temperature photoluminescence of LaF3 : Eu3+ with different morphologies and sizes were also investigated, and the results indicate that the emission intensity of the product is strongly affected by their size, shape, and other factors.
Resumo:
The nanocrystals of CeF3 with the hexagonal structure and different morphologies such as the disk, the rod, and the dot have been successfully synthesized via a mild ultrasound assisted route from an aqueous solution of cerium nitrate and different fluorine sources (KBF4, NaF, NH4F). The use of different fluorine sources has a remarkable effect on the morphology of the final product. The luminescence and UV-vis absorption properties of CeF3 nanocrystals with different morphologies have been investigated. Compared with other shape nanocrystals, the luminescence intensity of the disklike nanocrystals is obviously enhanced. It is suggested that the function-improved materials could be obtained by tailoring the shape of the CeF3 nanocrystals.
Resumo:
YVO4 nanocrystals doped with 10.0 mol% Eu3+ have been synthesized from an aqueous solution of ( Y, Eu)( NO3) (3) and NH4VO3 with or without ultrasonic irradiation. The ultrasonic irradiation has a strong effect on the morphology of the YVO4: Eu particles. The spindle-like particles with an equatorial diameter of 90 - 150 nm and a length of 250 - 300 nm could be obtained with ultrasonic irradiation, whereas only nanoparticles were produced without ultrasonic irradiation. The photoluminescence intensity of YVO4: Eu of the spindle-like particles was largely improved compared with that of the nanoparticles. The possible formation mechanism of the spindle-like particles of YVO4: Eu with the application of ultrasonic irradiation was discussed in this paper.
Resumo:
We successfully prepared a new kind of thermoresponsive and fluorescent complex of Tb(III) and PNIPAM-g-P(NIPAM-co-St) (PNNS) core-shell nanoparticle. It was found that Tb(III) mainly bonded to 0 of the carbonyl groups of PNNS, forming the novel (PNIPAM-g-P(NIPAM-co-St))-Tb(III) (PNNS-Tb(III)) complex. The maximum emission intensity of the complex at 545 nm is enhanced about 223 times comparing to that of the pure Tb(III). The intramolecular energy transfer efficiency from PNNS to Tb(III) reaches 50%. When the weight ratio of Tb(III) and the PNNS-Tb(III) complex is 1.2 wt.%, the enhancement of the emission fluorescence intensity at 545 nm is highest.
Resumo:
Silver nanoparticles were synthesized by the use of a two-armed polymer with a crown ether core [poly(styrene)]-dibenzo-18-crown-6-[poly(styrene)] based on the flexibility of the polymer chains and the complex effect of crown ether with Ag+ and Ag. The size of silver nanoparticles could be tailored by controlling the initial concentrations of the polymer and Ag+, and the molecular weight of the polymer. The emission of silver nanoparticles was blue-shifted, and the intensity of the photoluminescence of silver nanoparticles stabilized by the polymer was significantly increased due to the complex effect between the crown ether embedded in the polymer and the silver nanoparticles.
Resumo:
Gd2Ti2O7: Eu3+ thin film phosphors were fabricated by a sol-gel process. X-ray diffraction (XRD), atomic force microscopy (AFM) and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 800 degreesC and the crystallinity increased with the elevation of annealing temperatures. Uniform and crack free phosphor films were obtained, which mainly consisted of grains with an average size of 70 nm. The doped Eu3+ showed orange-red emission in crystalline Gd2Ti2O7 phosphor films due to an energy transfer from Gd2Ti2O7 host to them. Both the lifetimes and PL intensity of the Eu3+ increased with increasing the annealing temperature from 800 to 1000 degreesC, and the optimum concentrations for Eu3+ were determined to be 9 at.%. of Gd3+ in Gd2Ti2O7 film host.
Resumo:
Y0.9-xGdxEu0.1BO3 phosphors were synthesized by spray drying (SD) method, and the results were compared with those by conventional solid state (SS) and citrate gel (GC) methods. The PL intensity of phosphors increases with the increase of x value in Y0.9-xGdxEu0.1BO3 (prepared by SD) due to an energy migration process like Gd3+ - (Gd3+)(n) - Eu3+ occurred in the material. Compared with the latter two methods, the phosphor particles prepared by spray drying method have a better morphology, such as homogeneous size (about 1similar to3 mum) with spherical shape and smooth surface. Furthermore, the spray drying-derived phosphors have higher photoluminescence (PL) intensity than those by citrate gel method, but still a little lower than those by the solid state method.
Resumo:
The facile synthesis of the novel platinum nanoparticles/Eastman AQ55D/ruthenium(II) tris( bipyridine) (PtNPs/ AQ/Ru(bpy)(3)(2+)) colloidal material for ultrasensitive ECL solid-state sensors was reported for the first time. The cation ion-exchanger AQ was used not only to immobilize ECL active species Ru(bpy)(3)(2+) but also as the dispersant of PtNPs. Colloidal characterization was accomplished by transmission electron microscopy (TEM), X-ray photoelectron spectrum (XPS), and UV-vis spectroscopy. Directly coating the as-prepared colloid on the surface of a glassy carbon electrode produces an electrochemiluminescence (ECL) sensor. The electronic conductivity and electroactivity of PtNPs in composite film made the sensor exhibit faster electron transfer, higher ECL intensity of Ru(bpy)(3)(2+), and a shorter equilibration time than Ru(bpy)(3)(2+) immobilized in pure AQ film. Furthermore, it was demonstrated that the combination of PtNPs and permselective cation exchanger made the sensor exhibite excellent ECL behavior and stability and a very low limit of detection (1 x 10(-15) M) of tripropylamine with application prospects in bioanalysis. This method was very simple, effective, and low cost.
Resumo:
A useful method for the synthesis of various gold nanostructures is presented. The results demonstrated that flowerlike nanoparticle arrays, nanowire networks, nanosheets, and nanoflowers were obtained on the solid substrate under different experimental conditions. In addition, surface-enhanced Raman scattering (SERS) spectra of 4-aminothiophenol (4-ATP) on the as-prepared gold nanostructures of various shapes were measured, and their shape-dependent properties were evaluated. The intensity of the SERS signal was the smallest for the gold nanosheets, and the flowerlike nanoparticle arrays gave the strongest SERS signals.
Resumo:
LaPO4: Ce3+ and LaPO4: Ce3+, Tb3+ phosphor layers have been deposited successfully on monodispersed and spherical SiO2 particles of different sizes ( 300, 500, 900 and 1200 nm) through a sol - gel process, resulting in the formation of core - shell structured SiO2@ LaPO4: Ce3+/ Tb3+ particles. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microcopy (SEM), transmission electron microscopy (TEM), and general and time-resolved photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting SiO2@ LaPO4: Ce3+/ Tb3+ samples. The XRD results demonstrate that the LaPO4: Ce3+, Tb3+ layers begin to crystallize on the SiO2 templates after annealing at 700 degrees C, and the crystallinity increases on raising the annealing temperature. The obtained core - shell phosphors have perfectly spherical shape with a narrow size distribution, non-agglomeration, and a smooth surface. The doped rare-earth ions show their characteristic emission in the core - shell phosphors, i.e. Ce3+ 5d - 4f and Tb3+5D4 - F-7(J) (J = 6 - 3) transitions, respectively. The PL intensity of the Tb3+ increased on increasing the annealing temperature and the SiO2 core particle size.
Resumo:
A uniform nanolayer of europium-doped Gd2O3 was coated on the surface of preformed submicron silica spheres by a Pechini sol-gel process. The resulted SiO2@Gd2O3:Eu3+ core-shell structured phosphors were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra as well as kinetic decays. The XRD results show that the Gd2O3:Eu3+ layers start to crystallize on the SiO2 spheres after annealing at 400 degrees C and the crystallinity increases with raising the annealing temperature. The core-shell phosphors possess perfect spherical shape with narrow size distribution (average size: 640 nm) and non-agglomeration. The thickness of the Gd2O3:Eu3+ shells on the SiO2 cores can be adjusted by changing the deposition cycles (70 nm for three deposition cycles). Under short UV excitation, the obtained SiO2@Gd2O3:Eu3+ particles show a strong red emission with D-5(0)-F-7(2) (610 nm) of Eu3+ as the most prominent group.The PL intensity of Eu3+ increases with increasing the annealing temperature and the number of coating cycles.
Resumo:
Silicate oxyapatite La-9.33 (SiO6)(4)O-2:A (A = Eu3+, Tb3+ and/or Ce3+) phosphor films and their patterning were fabricated by a sol-gel process combined with soft lithography. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, atomic force microscopy, optical microscopy and photoluminescence spectra, as well as lifetimes, were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 800degreesC and the crystallinity increased with the increase in annealing temperatures. Transparent nonpatterned phosphor films were uniform and crack-free, which mainly consisted of rodlike grains with a size between 150 and 210 nm. Patterned thin films with different bandwidths (20, 50 mum) were obtained by the micromoulding in capillaries technique. The doped rare earth ions (Eu3+, Tb3+ and Ce3+) showed their characteristic emission in crystalline La-9.33(SiO6)(4)O-2 phosphor films, i.e. Eu3+ D-5(0)-F-7(J) (J = 0, 1, 2, 3, 4), Tb3+ D-5(3,4)-F-7(J) (J = 3, 4, 5, 6) and Ce3+ 5d (D-2)-4f (F-2(2/5), F-2(2/7)) emissions, respectively. Both the lifetimes and PL intensity of the Eu3+, Tb3+ ions increased with increasing annealing temperature from 800 to 1100 degreesC, and the optimum concentrations for Eu3+, Tb3+ were determined to be 9 and 7 mol% of La3+ in La-9.33(SiO6)(4)O-2 films, respectively. An energy transfer from Ce3+ to Tb3+ was observed in the La-9.33(SiO6)(4)O-2:Ce, Tb phosphor films, and the energy transfer efficiency was estimated as a function of Tb3+ concentration.