978 resultados para Integral transforms (GITT)
Resumo:
This paper considers general second kind integral equations of the form(in operator form φ − kφ = ψ), where the functions k and ψ are assumed known, with ψ ∈ Y, the space of bounded continuous functions on R, and k such that the mapping s → k(s, · ), from R to L1(R), is bounded and continuous. The function φ ∈ Y is the solution to be determined. Conditions on a set W ⊂ BC(R, L1(R)) are obtained such that a generalised Fredholm alternative holds: If W satisfies these conditions and I − k is injective for all k ∈ W then I − k is also surjective for all k ∈ W and, moreover, the inverse operators (I − k) − 1 on Y are uniformly bounded for k ∈ W. The approximation of the kernel in the integral equation by a sequence (kn) converging in a weak sense to k is also considered and results on stability and convergence are obtained. These general theorems are used to establish results for two special classes of kernels: k(s, t) = κ(s − t)z(t) and k(s, t) = κ(s − t)λ(s − t, t), where κ ∈ L1(R), z ∈ L∞(R), and λ ∈ BC((R\{0}) × R). Kernels of both classes arise in problems of time harmonic wave scattering by unbounded surfaces. The general integral equation results are here applied to prove the existence of a solution for a boundary integral equation formulation of scattering by an infinite rough surface and to consider the stability and convergence of approximation of the rough surface problem by a sequence of diffraction grating problems of increasingly large period.
Resumo:
We consider integral equations of the form ψ(x) = φ(x) + ∫Ωk(x, y)z(y)ψ(y) dy(in operator form ψ = φ + Kzψ), where Ω is some subset ofRn(n ≥ 1). The functionsk,z, and φ are assumed known, withz ∈ L∞(Ω) and φ ∈ Y, the space of bounded continuous functions on Ω. The function ψ ∈ Yis to be determined. The class of domains Ω and kernelskconsidered includes the case Ω = Rnandk(x, y) = κ(x − y) with κ ∈ L1(Rn), in which case, ifzis the characteristic function of some setG, the integral equation is one of Wiener–Hopf type. The main theorems, proved using arguments derived from collectively compact operator theory, are conditions on a setW ⊂ L∞(Ω) which ensure that ifI − Kzis injective for allz ∈ WthenI − Kzis also surjective and, moreover, the inverse operators (I − Kz)−1onYare bounded uniformly inz. These general theorems are used to recover classical results on Wiener–Hopf integral operators of21and19, and generalisations of these results, and are applied to analyse the Lippmann–Schwinger integral equation.
Resumo:
We consider second kind integral equations of the form x(s) - (abbreviated x - K x = y ), in which Ω is some unbounded subset of Rn. Let Xp denote the weighted space of functions x continuous on Ω and satisfying x (s) = O(|s|-p ),s → ∞We show that if the kernel k(s,t) decays like |s — t|-q as |s — t| → ∞ for some sufficiently large q (and some other mild conditions on k are satisfied), then K ∈ B(XP) (the set of bounded linear operators on Xp), for 0 ≤ p ≤ q. If also (I - K)-1 ∈ B(X0) then (I - K)-1 ∈ B(XP) for 0 < p < q, and (I- K)-1∈ B(Xq) if further conditions on k hold. Thus, if k(s, t) = O(|s — t|-q). |s — t| → ∞, and y(s)=O(|s|-p), s → ∞, the asymptotic behaviour of the solution x may be estimated as x (s) = O(|s|-r), |s| → ∞, r := min(p, q). The case when k(s,t) = к(s — t), so that the equation is of Wiener-Hopf type, receives especial attention. Conditions, in terms of the symbol of I — K, for I — K to be invertible or Fredholm on Xp are established for certain cases (Ω a half-space or cone). A boundary integral equation, which models three-dimensional acoustic propaga-tion above flat ground, absorbing apart from an infinite rigid strip, illustrates the practical application and sharpness of the above results. This integral equation mod-els, in particular, road traffic noise propagation along an infinite road surface sur-rounded by absorbing ground. We prove that the sound propagating along the rigid road surface eventually decays with distance at the same rate as sound propagating above the absorbing ground.
Resumo:
The paper considers second kind integral equations of the form $\phi (x) = g(x) + \int_S {k(x,y)} \phi (y)ds(y)$ (abbreviated $\phi = g + K\phi $), in which S is an infinite cylindrical surface of arbitrary smooth cross section. The “truncated equation” (abbreviated $\phi _a = E_a g + K_a \phi _a $), obtained by replacing S by $S_a $, a closed bounded surface of class $C^2 $, the boundary of a section of the interior of S of length $2a$, is also discussed. Conditions on k are obtained (in particular, implying that K commutes with the operation of translation in the direction of the cylinder axis) which ensure that $I - K$ is invertible, that $I - K_a $ is invertible and $(I - K_a )^{ - 1} $ is uniformly bounded for all sufficiently large a, and that $\phi _a $ converges to $\phi $ in an appropriate sense as $a \to \infty $. Uniform stability and convergence results for a piecewise constant boundary element collocation method for the truncated equations are also obtained. A boundary integral equation, which models three-dimensional acoustic scattering from an infinite rigid cylinder, illustrates the application of the above results to prove existence of solution (of the integral equation and the corresponding boundary value problem) and convergence of a particular collocation method.
Resumo:
e consider integral equations on the half-line of the form and the finite section approximation to x obtained by replacing the infinite limit of integration by the finite limit β. We establish conditions under which, if the finite section method is stable for the original integral equation (i.e. exists and is uniformly bounded in the space of bounded continuous functions for all sufficiently large β), then it is stable also for a perturbed equation in which the kernel k is replaced by k + h. The class of perturbations allowed includes all compact and some non-compact perturbations of the integral operator. Using this result we study the stability and convergence of the finite section method in the space of continuous functions x for which ()()()=−∫∞dttxt,sk)s(x0()syβxβx()sxsp+1 is bounded. With the additional assumption that ()(tskt,sk−≤ where ()()(),qsomefor,sassOskandRLkq11>+∞→=∈− we show that the finite-section method is stable in the weighted space for ,qp≤≤0 provided it is stable on the space of bounded continuous functions. With these results we establish error bounds in weighted spaces for x - xβ and precise information on the asymptotic behaviour at infinity of x. We consider in particular the case when the integral operator is a perturbation of a Wiener-Hopf operator and illustrate this case with a Wiener-Hopf integral equation arising in acoustics.
Resumo:
The paper considers second kind equations of the form (abbreviated x=y + K2x) in which and the factor z is bounded but otherwise arbitrary so that equations of Wiener-Hopf type are included as a special case. Conditions on a set are obtained such that a generalized Fredholm alternative is valid: if W satisfies these conditions and I − Kz, is injective for each z ε W then I − Kz is invertible for each z ε W and the operators (I − Kz)−1 are uniformly bounded. As a special case some classical results relating to Wiener-Hopf operators are reproduced. A finite section version of the above equation (with the range of integration reduced to [−a, a]) is considered, as are projection and iterated projection methods for its solution. The operators (where denotes the finite section version of Kz) are shown uniformly bounded (in z and a) for all a sufficiently large. Uniform stability and convergence results, for the projection and iterated projection methods, are obtained. The argument generalizes an idea in collectively compact operator theory. Some new results in this theory are obtained and applied to the analysis of projection methods for the above equation when z is compactly supported and k(s − t) replaced by the general kernel k(s,t). A boundary integral equation of the above type, which models outdoor sound propagation over inhomogeneous level terrain, illustrates the application of the theoretical results developed.
Resumo:
A representation of the conformal mapping g of the interior or exterior of the unit circle onto a simply-connected domain Ω as a boundary integral in terms ofƒ|∂Ω is obtained, whereƒ :=g -l. A product integration scheme for the approximation of the boundary integral is described and analysed. An ill-conditioning problem related to the domain geometry is discussed. Numerical examples confirm the conclusions of this discussion and support the analysis of the quadrature scheme.
Resumo:
In 2006 the UK government announced a move to zero carbon homes by 2016. The demand posed a major challenge to policy makers and construction professionals entailing a protracted process of policy design. The task of giving content to this target is used to explore the role of evidence in the policy process. Whereas much literature on policy and evidence treats evidence as an external input, independent of politics, this paper explores the ongoing mutual constitution of both. Drawing on theories of policy framing and the sociology of classification, the account follows the story of a policy for Zero Carbon Homes from the parameters and values used to specify the target. Particular attention is given to the role of Regulatory Impact Assessments (RIAs) and to the creation of a new policy venue, the Zero Carbon Hub. The analysis underlines the way in which the choices about how to model and measure the aims potentially transforms them, the importance of policy venues for transparency and the role of RIAs in the authorization of particular definitions. A more transparent, open approach to policy formulation is needed in which the framing of evidence is recognized as an integral part of the policy process.
Resumo:
This work presents the first integral field spectroscopy of the Homunculus nebula around eta Carinae in the near-infrared spectral region (J band). We confirmed the presence of a hole on the polar region of each lobe, as indicated by previous near-IR long-slit spectra and mid-IR images. The holes can be described as a cylinder of height (i.e. the thickness of the lobe) and diameter of 6.5 and 6.0 x 10(16) cm, respectively. We also mapped the blue-shifted component of He I lambda 10830 seen towards the NW lobe. Contrary to previous works, we suggested that this blue-shifted component is not related to the Paddle but it is indeed in the equatorial disc. We confirmed the claim of N. Smith and showed that the spatial extent of the Little Homunculus matches remarkably well the radio continuum emission at 3 cm, indicating that the Little Homunculus can be regarded as a small H II region. Therefore, we used the optically thin 1.3 mm radio flux to derive a lower limit for the number of Lyman-continuum photons of the central source in eta Car. In the context of a binary system, and assuming that the ionizing flux comes entirely from the hot companion star, the lower limit for its spectral type and luminosity class ranges from O5.5 III to O7 I. Moreover, we showed that the radio peak at 1.7 arcsec NW from the central star is in the same line-of-sight of the `Sr-filament` but they are obviously spatially separated, while the blue-shifted component of He I lambda 10830 may be related to the radio peak and can be explained by the ultraviolet radiation from the companion star.
Resumo:
In this paper, we classify all the global phase portraits of the quadratic polynomial vector fields having a rational first integral of degree 3. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The ground state thermal neutron cross section and the resonance integral for the (165)Ho(n, gamma)(166)Ho reaction in thermal and 1/E regions, respectively, of a thermal reactor neutron spectrum have been measured experimentally by activation technique. The reaction product, (166)Ho in the ground state, is gaining considerable importance as a therapeutic radionuclide and precisely measured data of the reaction are of significance from the fundamental point of view as well as for application. In this work, the spectrographically pure holmium oxide (Ho(2)O(3)) powder samples were irradiated with and without cadmium covers at the IEA-RI reactor (IPEN, Sao Paulo), Brazil. The deviation of the neutron spectrum shape from 1/E law was measured by co-irradiating Co, Zn, Zr and Au activation detectors with thermal and epithermal neutrons followed by regression and iterative procedures. The magnitudes of the discrepancies that can occur in measurements made with the ideal 1/E law considerations in the epithermal range were studied. The measured thermal neutron cross section at the Maxwellian averaged thermal energy of 0.0253 eV is 59.0 +/- 2.1 b and for the resonance integral 657 +/- 36b. The results are measured with good precision and indicated a consistency trend to resolve the discrepant status of the literature data. The results are compared with the values in main libraries such as ENDF/B-VII, JEF-2.2 and JENDL-3.2, and with other measurements in the literature.
Resumo:
Path-integral representations for a scalar particle propagator in non-Abelian external backgrounds are derived. To this aim, we generalize the procedure proposed by Gitman and Schvartsman of path-integral construction to any representation of SU(N) given in terms of antisymmetric generators. And for arbitrary representations of SU(N), we present an alternative construction by means of fermionic coherent states. From the path-integral representations we derive pseudoclassical actions for a scalar particle placed in non-Abelian backgrounds. These actions are classically analyzed and then quantized to prove their consistency.
Resumo:
It is known that the actions of field theories on a noncommutative space-time can be written as some modified (we call them theta-modified) classical actions already on the commutative space-time (introducing a star product). Then the quantization of such modified actions reproduces both space-time noncommutativity and the usual quantum mechanical features of the corresponding field theory. In the present article, we discuss the problem of constructing theta-modified actions for relativistic QM. We construct such actions for relativistic spinless and spinning particles. The key idea is to extract theta-modified actions of the relativistic particles from path-integral representations of the corresponding noncommutative field theory propagators. We consider the Klein-Gordon and Dirac equations for the causal propagators in such theories. Then we construct for the propagators path-integral representations. Effective actions in such representations we treat as theta-modified actions of the relativistic particles. To confirm the interpretation, we canonically quantize these actions. Thus, we obtain the Klein-Gordon and Dirac equations in the noncommutative field theories. The theta-modified action of the relativistic spinning particle is just a generalization of the Berezin-Marinov pseudoclassical action for the noncommutative case.
Resumo:
In this paper, the relationship between the filter coefficients and the scaling and wavelet functions of the Discrete Wavelet Transform is presented and exemplified from a practical point-of-view. The explanations complement the wavelet theory, that is well documented in the literature, being important for researchers who work with this tool for time-frequency analysis. (c) 2011 Elsevier Ltd. All rights reserved.