935 resultados para Input-output table


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Waste biomass is generated during the conservation management of semi-natural habitats, and represents an unused resource and potential bioenergy feedstock that does not compete with food production. Thermogravimetric analysis was used to characterise a representative range of biomass generated during conservation management in Wales. Of the biomass types assessed, those dominated by rush (Juncus effuses) and bracken (Pteridium aquilinum) exhibited the highest and lowest volatile compositions respectively and were selected for bench scale conversion via fast pyrolysis. Each biomass type was ensiled and a sub-sample of silage was washed and pressed. Demineralization of conservation biomass through washing and pressing was associated with higher oil yields following fast pyrolysis. The oil yields were within the published range established for the dedicated energy crops miscanthus and willow. In order to examine the potential a multiple output energy system was developed with gross power production estimates following valorisation of the press fluid, char and oil. If used in multi fuel industrial burners the char and oil alone would displace 3.9 × 105 tonnes per year of No. 2 light oil using Welsh biomass from conservation management. Bioenergy and product development using these feedstocks could simultaneously support biodiversity management and displace fossil fuels, thereby reducing GHG emissions. Gross power generation predictions show good potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brominated flame retardants (BFRs) have been found in Arctic wildlife, lake sediment, and air. To identify the atmospheric BFR deposition history on Svalbard, Norway, we analyzed 19 BFRs, including hexabromocyclododecane (HBCD), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), decabromodiphenyl ethane (DBDPE), pentabromoethylbenzene (PBEB),and 15 polybrominated diphenyl ether congeners (PBDE) in the upper 34 m of an ice core (representing 1953-2005) from Holtedahlfonna, the western-most ice sheet on Svalbard. All of the non-PBDE compounds were detected in nearly continuous profiles in the core. Seven PBDEs were not observed above background (28,47,66,100,99,154,153), while 4 were found in 1 or 2 of 6 segments (17,85,138,183). BDEs-49,71,190,209 had nearly continuous profiles but only BDE-209 in large amounts. The greatest inputs were HBCD and BDE-209, 910, and 320 pg/cm**2/yr from 1995-2005. DBDPE, BTBPE, and PBEB show nearly continuous input growth in recent core segments, but all were <6 pg/cm**2/yr. Long-range atmospheric processes may have moved these particle-bound BFRs to the site, probably during the Arctic haze season. Average air mass trajectories over 10 years show >75% of atmospheric flow to Holtedahlfonna coming from Eurasia during haze periods (March and April).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The origin of three Red Sea submarine brine pools was investigated by analysis of the S and O isotope ratios of dissolved sulfate and Sr isotope ratios of dissolved Sr in the brines. Sulfur and O isotope ratios of sulfate and Sr isotope ratios of evaporitic source rocks for the brines were measured for comparison. The S, O and Sr isotope ratios of evaporites recovered from DSDP site 227 are consistent with an upper Miocene evaporites age. The Valdivia Deep brine formed by karstic dissolution of Miocene evaporites by overlying seawater and shows no signs of hydrothermal input. The Suakin Deep brines are derived from, or have isotopically exchanged with Miocene or older evaporites. There has been only minor dilution of the brine by overlying seawater. Strontium isotope ratios of Suakin brine may indicate addition of a minor (15%) amount of volcanic Sr to the brine, but there is no evidence of high temperature brine-rock interaction. The sulfate in the Atlantis II brine was apparently derived from seawater. The O isotope ratio of sulfate in the present Atlantis II brine could reflect isotopic exchange between seawater sulfate and the brine at approximately 255°C. Approximately 30% of the Sr in the Atlantis II brine is derived from the underlying basalt, probably by hydrothermal leaching. Atlantis II brine is the only known example from the Red Sea which has a significant high-temperature hydrothermal history.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dansgaard-Oeschger (D-O) cycles are the most dramatic, frequent, and wide-reaching abrupt climate changes in the geologic record. On Greenland, D-O cycles are characterized by an abrupt warming of 10 ± 5°C from a cold stadial to a warm interstadial phase, followed by gradual cooling before a rapid return to stadial conditions. The mechanisms responsible for these millennial cycles are not fully understood but are widely thought to involve abrupt changes in Atlantic Meridional Overturning Circulation due to freshwater perturbations. Here we present a new, high-resolution multiproxy marine sediment core monitoring changes in the warm Atlantic inflow to the Nordic seas as well as in local sea ice cover and influx of ice-rafted debris. In contrast to previous studies, the freshwater input is found to be coincident with warm interstadials on Greenland and has a Fennoscandian rather than Laurentide source. Furthermore, the data suggest a different thermohaline structure for the Nordic seas during cold stadials in which relatively warm Atlantic water circulates beneath a fresh surface layer and the presence of sea ice is inferred from benthic oxygen isotopes. This implies a delicate balance between the warm subsurface Atlantic water and fresh surface layer, with the possibility of abrupt changes in sea ice cover, and suggests a novel mechanism for the abrupt D-O events observed in Greenland ice cores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lipid compositions of sediments recovered during Ocean Drilling Program Leg 184 in the South China Sea have been identified and quantified. The identified lipids can be ascribed to terrigenous and marine sources. Terrigenous lipids are mainly C27, C29, C31 n-alkanes, C26, C28, C30 n-fatty acids, and n-alcohols, which were derived from leaf waxes of higher land plants and transported to the sea by airborne dust or fresh water. Marine lipids, mainly C37 and C38 alkenones, C30 diol, and C30 and C32 keto-ols, were from microalgae, notably haptophytes and eustigmatophytes. Elevated concentrations and accumulation rates of both terrigenous and marine lipids in the interval 202-245 meters composite depth (mcd) and 0-166 mcd were postulated to be related to the development of the East Asian monsoon at 6-8 Ma and enhanced variations of the developed East Asian monsoon after 3.2 Ma, respectively. The pronounced late Oligocene input of terrigenous lipids reflects the paleoenvironment of a newly opened, narrow basin, with restricted ocean waters and the proximity of continental runoff.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Atlantic Meridional Overturning Circulation (AMOC) plays an important role in the Northern Hemisphere climate system. Significant interest went into the question of how excessive freshwater input through melting of continental ice can affect its overturning vigor and, hence, heat supply, to higher northern latitudes. Such forcing can be tested by investigating its behavior during extreme iceberg discharge events into the open North Atlantic during the last glacial period, the so-called Heinrich events (HE). Here we present neodymium (Nd) isotope compositions of past seawater, a sensitive chemical water mass tag, extracted from sediments of Ocean Drilling Program Site 1063 in the western North Atlantic (Bermuda Rise), covering the period surrounding HE 2, the Last Glacial Maximum, and the early deglaciation. These data are compared with a record of the kinematic circulation tracer (231Pa/230Th)xs extracted from the same sediment core. Both tracers indicate significant circulation changes preceding intense ice rafting during HE 2 by almost 2 kyr. Moreover, the Nd isotope record suggests the presence of deeply ventilating North Atlantic Deep Water early during Marine Isotope Stage 2 until it was replaced by Southern Source Water at ~27 ka. The early switch to high (Pa/Th)xs and radiogenic epsilon-Nd in relation to intensified ice rafting during HE 2 suggests that ice rafting into the open North Atlantic during major HE 2 was preceded by an early change of the AMOC. This opens the possibility that variations in AMOC contributed to or even triggered the ice sheet instability rather than merely responding to it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spectral albedo in high resolution, from 290 to 1050 nm, has been measured at Neumayer, Antarctica, (70°39' S, 8°15' W) during the austral summer 2003/2004. At 500 nm, the spectral albedo nearly reaches unity, with slightly lower values below and above 500 nm. Above 600 nm, the spectral albedo decreases to values between 0.45 and 0.75 at 1000 nm. For one cloudless case an albedo up to 1.01 at 500 nm could be determined. This can be explained by the larger directional component of the snow reflectivity for direct incidence, combined with a slightly mislevelled sensor and the snow surface not being perfectly horizontal. A possible explanation for an observed decline in albedo is an increase in snow grain size. The theoretically predicted increase in albedo with increasing solar zenith angle (SZA) could not be observed. This is explained by the small range of SZA during albedo measurements, combined with the effect of changing snow conditions outweighing the effect of changing SZA. The measured spectral albedo serves as input for radiative transfer models, describing radiation conditions in Antarctica.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reconstruction of regional climate and the Okhotsk Sea (OS) environment for the Last Glacial Maximum (LGM), deglaciation and Holocene were performed on the basis of high-resolution records of ice rafted debris (IRD), CaCO3, opal, total organic carbon (TOC), biogenic Ba (Ba_bio) and redox sensitive element (Mn, Mo) content, and diatom and pollen results of four cores that form a north-southern transect. Age models of the studied cores were earlier established by AMS 14C data, oxygen - isotope chronostratigraphy and tephrochronology. According to received results, since 25 ka the regional climate and OS environmental conditions have changed synchronously with LGM condition, cold Heinrich event 1, Bølling -Allerød (BA) warming, Younger Dryas (YD) cooling and Pre-Boreal (PB) warming recorded in the Greenland ice core, North Atlantic sediment, and China cave stalagmites. Calculation of IRD MAR in sediment of north-south transect cores indicate an increase of sea ice formation several times in the glacial OS as compared to the Late Holocene. Accompanying ice formation, increased brine rejection and the larger potential density of surface water at the north shelf due to a drop of glacial East Asia summer monsoon precipitation and Amur River run off, led to strong enhancement of the role of the OS in glacial North Pacific Intermediate Water (NPIW) formation. The remarkable increase in OS productivity during BA and PB warming was probably related with significant reorganisation of the North Pacific deep water ventilation and nutrient input into the NPIW and OS Intermediate Water (OSIW). Seven Holocene OS millennial cold events based on the elevated values of the detrended IRD stack record over the IRD broad trend in the sediments of the studied cores have occurred synchronously with cold events recorded in the North Atlantic, Greenland ice cores and China cave stalagmites after 9 ka. Diatom production in the OS were mostly controlled by sea ice cover changes and surface water stratification induced by sea-ice melting; therefore significant opal accumulation in sediments of this basin begin from 4-6 ka ago simultaneously with a remarkable decrease of sea ice cover.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The solid phases from surface sediments, atmospheric dusts, and rivers of the Indian Ocean environment have been analyzed for their clay minerals and quartz. Such data have been used to delimit the transport paths and sources of the detrital minerals in the oceanic deposits. Diagnostic in distinguishing fluvial and eolian inputs to the northern Indian Ocean is a combination of the clay mineral assemblages and of their geographic distributions. River borne solids are the primary components of the Bay of Bengal deposits. The eastern part receives its continental input through the Ganges-Brahmaputra river system, while drainage of the Indian Peninsula by rivers introduces solids to the western part. The former materials are characterized by high illite and chlorite in the clay mineral assemblages; the latter by montmorillonite. The winds over the Bay bear distinctive dust burdens based upon their directions. However, their contributions to the sediments are insignificant. The eastern sector of the Arabian Sea receives major contributions of continental debris from the rivers and the high montmorillonite levels clearly indicate a source in the Indian Peninsula. The rest of the Sea appears to receive most of its land-derived materials from the north, perhaps the desert regions of northern India and West Pakistan, and they are wind-borne. These materials are also transported to the equatorial regions of the Indian Ocean. A gradient in attapulgite, just north of the equator, may indicate an eolian contribution to the Arabian Sea from the African continent. The halogenated hydrocarbon pesticides were assayed in the southwest monsoon winds and enter the Bay of Bengal at levels of a half ton per month, an amount comparable to those introduced by other wind and river systems to the marine environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have analyzed the major, trace, and rare earth element composition of surface sediments collected from a transect across the Equator at 135°W longitude in the Pacific Ocean. Comparing the behavior of this suite of elements to the CaCO3, opal, and Corg fluxes (which record sharp maxima at the Equator, previously documented at the same sampling stations) enables us to assess the relative significance of the various pathways by which trace elements are transported to the equatorial Pacific seafloor. The 1. (1) high biogenic source at the Equator, associated with equatorial divergence of surface water and upwelling of nutrient-rich water, and 2. (2) high aluminosilicate flux at 4°N, associated with increased terrigenous input from elevated rainfall at the Intertropical Convergence Zone (ITCZ) of the tradewinds, are the two most important fluxes with which elemental transport is affiliated. The biogenic flux at the Equator transports Ca and Sr structurally bound to carbonate tests and Mn primarily as an adsorbed component. Trace elements such as Cr, As, Pb, and the REEs are also influenced by the biogenic flux at the Equator, although this affiliation is not regionally dominant. Normative calculations suggest that extremely large fluxes of Ba and P at the Equator are carried by only small proportions of barite and apatite phases. The high terrigenous flux at the ITCZ has a profound effect on chemical transport to the seafloor, with elemental fluxes increasing tremendously and in parallel with Ti. Normative calculations, however, indicate that these fluxes are far in excess of what can be supplied by lattice-bound terrigenous phases. The accumulation of Ba is greater than is affiliated with biogenic transport at the Equator, while the P flux at the ITCZ is only 10% less than at the Equator. This challenges the common view that Ba and P are essentially exclusively associated with biogenic fluxes. Many other elements (including Mn, Pb, As, and REEs) also record greater accumulation beneath the ITCZ than at the Equator. Thus, adsorptive scavenging by terrigenous paniculate matter, or phases intimately associated with them, appears to be an extremely important process regulating elemental transport to the equatorial Pacific seafloor. These findings emphasize the role of vertical transport to the sediment, and provide additional constraints on the paleochemical use of trace elements to track biogenic and terrigenous fluxes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new generalized schematic map of distribution of recent sediments within Eurasian Arctic shelves is considered. The sediments have accumulated as a result of interaction of various factors and processes specific to high latitudes. They include input of terrigenous material by modern glaciers, ice transport, thermal abrasion, sedimentation controlled by many years of ice cover, and others. Characteristic regularity is marked over Arctic shelves: in seas with heavier ice cover, the most fine-grained deposits are distributed, they contain minimum amount of coarse-grained ice rafted debris; in seas with lighter ice cover mosaic distribution of various types of sediments is observed. Composition of surface sediments from the Arctic shelves corresponds to a relatively cool stage of the modern interglacial period. In the 21-st century a new warming is expected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In comparison to other sectors of the marine system, the palaeoceanography of the subarctic North Pacific Ocean is poorly constrained. New diatom isotope records of d13C, d18O, d30Si (d13Cdiatom, d18Odiatom, and d30Sidiatom) are presented alongside existing geochemical and isotope records to document changes in photic zone conditions, including nutrient supply and the efficiency of the soft-tissue biological pump, between Marine Isotope Stage (MIS) 4 and MIS 5e. Peaks in opal productivity in MIS 5b/c and MIS 5e are both associated with the breakdown of the regional halocline stratification and increased nutrient supply to the photic zone. Whereas the MIS 5e peak is associated with low rates of nutrient utilisation, the MIS 5b/c peak is associated with significantly higher rates of nutrient utilisation. Both peaks, together with other smaller increases in productivity in MIS 4 and 5a, culminate with a significant increase in freshwater input which strengthens/re-establishes the halocline and limits further upwelling of sub-surface waters to the photic zone. Whilst d30Sidiatom and previously published records of diatom d15N (d15Ndiatom) (Brunelle et al., 2007, 2010) show similar trends until the latter half of MIS 5a, the records become anti-correlated after this juncture and into MIS 4, suggesting a possible change in photic zone state such as may occur with a shift to iron or silicon limitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Late Miocene-Recent micropaleontological and geochemical records from Ocean Drilling Program (ODP) Site 1143 in the southern South China Sea (SCS) indicate that increase and decrease in abundance of siliceous plankton may be controlled mainly by the input of nutrients derived from land and provided by upwelling. A high export production event - a "biogenic bloom" event - occurred in the southern SCS between 12 and 6 Ma. During this period, high ratios of smectite/(illite + chlorite), smectite/quartz and Al/K indicate a high weathering intensity of the Asian continent, possibly due to the intensification of the East Asian Summer Monsoon (EASM), which may have increased the net flux of nutrients to the ocean, both directly through terrestrial input and indirectly through upwelling activity. A drop in Ba/Ti, Al/Ti and Ca/Ti values around 6 Ma may indicate a lowering of productivity, possibly due to the large consumption of sea surface nutrients by the "biogenic bloom". Alternatively, it may indicate a shift in terrigenous input source area. At about 5.4 Ma, a decrease in weathering intensity, as indicated by a sudden decrease in the values of smectite/(illite + chlorite), smectite/quartz and Al/K, might have led to a sudden decrease of terrestrial nutrient input to the SCS. We suggest that the biogenic bloom ended when nutrients in surface waters were exhausted, because of a decrease in supply as well as a decrease in upwelling intensity due to weakening of the EASM. As a result, radiolarians were absent in the studied area between ~6 and 3.2 Ma. At ~3.2 Ma, radiolarians began to recover, possibly because the start of Northern Hemispheric glaciation and the rapid uplift of the Tibet Plateau led to intensification of the East Asian monsoon. After the Mid-Pleistocene Climate Transition at 0.9 Ma, the abundance and mass accumulation rates of radiolarians increased, probably as a result of increased upwelling activity driven by the increasing intensity of the summer monsoon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Constraining variations in marine N2-fixation over glacial-interglacial timescales is crucial for determining the role of the marine nitrogen cycle in modifying ocean productivity and climate, yet paleo-records from N2-fixation regions are sparse. Here we present new nitrogen isotope (d15N) records of bulk sediment and foraminifera test-bound (FB) nitrogen extending back to the last ice age from the oligotrophic Gulf of Mexico (GOM). Previous studies indicate a substantial terrestrial input during the last ice age and early deglacial, for which we attempt to correct the bulk sediment d15N using its observed relationship with the C/N ratio. Both corrected bulk and FB-d15N reveal a substantial glacial-to-Holocene decrease of d15N toward Holocene values of around 2.5 per mil, similar to observations from the Caribbean. This d15N change is most likely due to a glacial-to-Holocene increase in regional N2-fixation. A deglacial peak in the FB-d15N of thermocline dwelling foraminifera Orbulina universa probably reflects a whole ocean increase in the d15N of nitrate during deglaciation. The d15N of the surface dwelling foraminifera Globigerinoides ruber and the corrected bulk d15N show little sign of this deglacial peak, both decreasing from last glacial values much earlier than does the d15N of O. universa; this may indicate that G. ruber and bulk N reflect the euphotic zone signal of an early local increase in N2-fixation. Our results add to the evidence that, during the last ice age, the larger iron input from dust did not lead to enhanced N2-fixation in this region. Rather, the glacial-to-Holocene decrease in d15N is best explained by a response of N2-fixation within the Atlantic to the deglacial increase in global ocean denitrification.