890 resultados para Input bias
Resumo:
OBJECTIVE: The purpose of this study was to investigate the presence of publication bias (acceptance of articles indicating statistically significant results). METHODS: The journals possessing the highest impact factor (2008 data) in each dental specialty were included in the study. The content of the 6 most recent issues of each journal was hand searched and research articles were classified into 4 type categories: cross-sectional, case-control, cohort, and interventional (nonrandomized clinical trials and randomized controlled trials). In total, 396 articles were included in the analysis. Descriptive statistics and univariate and multivariate logistic regression was used to examine the association between article-reported statistical significance (dependent variable) and journal impact factor and article study type subject area (independent variables). RESULTS: A statistically significant acceptance rate of positive result was found, ranging from 75% to 90%, whereas the value of impact factor was not related to publication bias among leading dental journals. Compared with other research designs, clinical intervention studies (randomized or nonrandomized) presented the highest percentage of nonsignificant findings (20%); RCTs represented 6% of the examined investigations. CONCLUSIONS: Compared with the Journal of Clinical Periodontology, all other subspecialty journals, except the Journal of Oral and Maxillofacial Surgery, showed significantly decreased odds of publishing an RCT, which ranged from 60% to 93% (P < .05).
Resumo:
It has been suggested that participant withdrawal from studies can bias estimates. However, this is only possible when withdrawers and nonwithdrawers differ in an important way. We tested the hypothesis that withdrawers are more likely than nonwithdrawers to be avoidant and negatively affected.
Resumo:
Neglect is defined as the failure to attend and to orient to the contralesional side of space. A horizontal bias towards the right visual field is a classical finding in patients who suffered from a right-hemispheric stroke. The vertical dimension of spatial attention orienting has only sparsely been investigated so far. The aim of this study was to investigate the specificity of this vertical bias by means of a search task, which taps a more pronounced top-down attentional component. Eye movements and behavioural search performance were measured in thirteen patients with left-sided neglect after right hemispheric stroke and in thirteen age-matched controls. Concerning behavioural performance, patients found significantly less targets than healthy controls in both the upper and lower left quadrant. However, when targets were located in the lower left quadrant, patients needed more visual fixations (and therefore longer search time) to find them, suggesting a time-dependent vertical bias.
Resumo:
Background Leg edema is a common manifestation of various underlying pathologies. Reliable measurement tools are required to quantify edema and monitor therapeutic interventions. Aim of the present work was to investigate the reproducibility of optoelectronic leg volumetry over 3 weeks' time period and to eliminate daytime related within-individual variability. Methods Optoelectronic leg volumetry was performed in 63 hairdressers (mean age 45 ± 16 years, 85.7% female) in standing position twice within a minute for each leg and repeated after 3 weeks. Both lower leg (legBD) and whole limb (limbBF) volumetry were analysed. Reproducibility was expressed as analytical and within-individual coefficients of variance (CVA, CVW), and as intra-class correlation coefficients (ICC). Results A total of 492 leg volume measurements were analysed. Both legBD and limbBF volumetry were highly reproducible with CVA of 0.5% and 0.7%, respectively. Within-individual reproducibility of legBD and limbBF volumetry over a three weeks' period was high (CVW 1.3% for both; ICC 0.99 for both). At both visits, the second measurement revealed a significantly higher volume compared to the first measurement with a mean increase of 7.3 ml ± 14.1 (0.33% ± 0.58%) for legBD and 30.1 ml ± 48.5 ml (0.52% ± 0.79%) for limbBF volume. A significant linear correlation between absolute and relative leg volume differences and the difference of exact day time of measurement between the two study visits was found (P < .001). A therefore determined time-correction formula permitted further improvement of CVW. Conclusions Leg volume changes can be reliably assessed by optoelectronic leg volumetry at a single time point and over a 3 weeks' time period. However, volumetry results are biased by orthostatic and daytime-related volume changes. The bias for day-time related volume changes can be minimized by a time-correction formula.
Resumo:
Different codons encoding the same amino acid are not used equally in protein-coding sequences. In bacteria, there is a bias towards codons with high translation rates. This bias is most pronounced in highly expressed proteins, but a recent study of synthetic GFP-coding sequences did not find a correlation between codon usage and GFP expression, suggesting that such correlation in natural sequences is not a simple property of translational mechanisms. Here, we investigate the effect of evolutionary forces on codon usage. The relation between codon bias and protein abundance is quantitatively analyzed based on the hypothesis that codon bias evolved to ensure the efficient usage of ribosomes, a precious commodity for fast growing cells. An explicit fitness landscape is formulated based on bacterial growth laws to relate protein abundance and ribosomal load. The model leads to a quantitative relation between codon bias and protein abundance, which accounts for a substantial part of the observed bias for E. coli. Moreover, by providing an evolutionary link, the ribosome load model resolves the apparent conflict between the observed relation of protein abundance and codon bias in natural sequences and the lack of such dependence in a synthetic gfp library. Finally, we show that the relation between codon usage and protein abundance can be used to predict protein abundance from genomic sequence data alone without adjustable parameters.
Resumo:
Different codons encoding the same amino acid are not used equally in protein-coding sequences. In bacteria, there is a bias towards codons with high translation rates. This bias is most pronounced in highly expressed proteins, but a recent study of synthetic GFP-coding sequences did not find a correlation between codon usage and GFP expression, suggesting that such correlation in natural sequences is not a simple property of translational mechanisms. Here, we investigate the effect of evolutionary forces on codon usage. The relation between codon bias and protein abundance is quantitatively analyzed based on the hypothesis that codon bias evolved to ensure the efficient usage of ribosomes, a precious commodity for fast growing cells. An explicit fitness landscape is formulated based on bacterial growth laws to relate protein abundance and ribosomal load. The model leads to a quantitative relation between codon bias and protein abundance, which accounts for a substantial part of the observed bias for E. coli. Moreover, by providing an evolutionary link, the ribosome load model resolves the apparent conflict between the observed relation of protein abundance and codon bias in natural sequences and the lack of such dependence in a synthetic gfp library. Finally, we show that the relation between codon usage and protein abundance can be used to predict protein abundance from genomic sequence data alone without adjustable parameters.