933 resultados para Inflammatory Bowel Diseases
Resumo:
Heme, iron (Fe) protoporphyrin IX, functions as a prosthetic group in a range of hemoproteins essential to support life under aerobic conditions. The Fe contained within the prosthetic heme groups of these hemoproteins can catalyze the production of reactive oxygen species. Presumably for this reason, heme must be sequestered within those hemoproteins, thereby shielding the reactivity of its Fe-heme. However, under pathologic conditions associated with oxidative stress, some hemoproteins can release their prosthetic heme groups. While this heme is not necessarily damaging per se, it becomes highly cytotoxic in the presence of a range of inflammatory mediators such as tumor necrosis factor. This can lead to tissue damage and, as such, exacerbate the pathologic outcome of several immune-mediated inflammatory conditions. Presumably, targeting "free heme" may be used as a therapeutic intervention against these diseases.
Resumo:
Mode of access: Internet.
Resumo:
This paper reviews hypotheses about roles of angiogenesis in the pathogenesis of inflammatory disease in two organs, the synovial joint and the lung. Neovascularisation is a fundamental process for growth and tissue repair after injury. Nevertheless, it may contribute to a variety of chronic inflammatory diseases, including rheumatoid arthritis, osteoarthritis, asthma, and pulmonary fibrosis. Inflammation can promote angiogenesis, and new vessels may enhance tissue inflammation. Angiogenesis in inflammatory disease may also contribute to tissue growth, disordered tissue perfusion, abnormal ossification, and enhanced responses to normal or pathological stimuli. Angiogenesis inhibitors may reduce inflammation and may also help to restore appropriate tissue structure and function
Resumo:
Neuroinflammation represents a key hallmark of neurodegenerative diseases and is the result of a complex network of signaling cascades within microglial cells. A positive feedback loop exists between inflammation, microglia activation and protein misfolding processes, that, together with oxidative stress and excitotoxicity, lead to neuronal degeneration. Therefore, targeting this vicious cycle can be beneficial for mitigating neurodegeneration and cognitive decline in central nervous system disorders. At molecular level, GSK-3B and Fyn kinases play a crucial role in microglia activation and their deregulation has been associated to many neurodegenerative diseases. Thus, we envisioned their combined targeting as an effective approach to disrupt this toxic loop. Specifically in this project, a hit compound, based on a 7-azaindole-3-aminothiazole structure, was first identified in a virtual screening campaign, and displayed a weak dual inhibitory activity on GSK-3B and Fyn, unbalanced towards the former. Then, in a commitment to uncover the structural features required for modulating the activity on the two targets, we systematically manipulated this compound by inserting various substitution patterns in different positions. The most potent compounds obtained were advanced to deeper investigations to test their ability of tackling the inflammatory burden also in cellular systems and to unveil their binding modes within the catalytic pocket. The new class of molecules synthesized emerged as a valuable tool to deepen our understanding of the complex network governing the inflammatory events in neurodegenerative disorders.
Resumo:
The endothelium plays a vital role in maintaining circulatory homeostasis by the release of relaxing and contracting factors. Any change in this balance may result in a process known as endothelial dysfunction that leads to impaired control of vascular tone and contributes to the pathogenesis of some cardiovascular and endocrine/metabolic diseases. Reduced endothelium-derived nitric oxide (NO) bioavailability and increased production of thromboxane A2, prostaglandin H2 and superoxide anion in conductance and resistance arteries are commonly associated with endothelial dysfunction in hypertensive, diabetic and obese animals, resulting in reduced endothelium-dependent vasodilatation and in increased vasoconstrictor responses. In addition, recent studies have demonstrated the role of enhanced overactivation ofβ-adrenergic receptors inducing vascular cytokine production and endothelial NO synthase (eNOS) uncoupling that seem to be the mechanisms underlying endothelial dysfunction in hypertension, heart failure and in endocrine-metabolic disorders. However, some adaptive mechanisms can occur in the initial stages of hypertension, such as increased NO production by eNOS. The present review focuses on the role of NO bioavailability, eNOS uncoupling, cyclooxygenase-derived products and pro-inflammatory factors on the endothelial dysfunction that occurs in hypertension, sympathetic hyperactivity, diabetes mellitus, and obesity. These are cardiovascular and endocrine-metabolic diseases of high incidence and mortality around the world, especially in developing countries and endothelial dysfunction contributes to triggering, maintenance and worsening of these pathological situations.
Resumo:
Wide-ranging activation of the innate immune system causing chronic low-grade inflammation is closely involved not only in the pathogenesis of type 2 diabetes mellitus and its complications, through an ongoing cytokine-induced acute-phase response, but also in the pathogenesis of periodontal diseases, whereby cytokines play a central role in the host's response to the periodontal biofilm. Although there is extensive knowledge about the pathways through which diabetes affects periodontal status, less is known about the impact of periodontal diseases on the diabetes-related inflammatory state. This review attempts to explain the immunobiological connection between periodontal diseases and type 2 diabetes mellitus, exploring the mechanisms through which periodontal infection can contribute to the low-grade general inflammation associated with diabetes (thus aggravating insulin resistance) and discussing the impact of periodontal treatment on glycemic control in people living with both diabetes and periodontal disease.
Resumo:
Background Very few studies have investigated, in the elderly, the effect of rheumatic inflammatory states on phagocyte function and free radical production. The objective of this article is to evaluate phagocytosis by neutrophils and the production of nitric oxide (.NO) by monocytes in elderly women recruited among patients of the Brazilian Public Health System. Methods: Forty patients aged more than 60 years with rheumatic inflammatory diseases were studied. Phagocytosis was measured by flow cytometry. .NO production was measured by the total nitrite assay and conventional inflammation markers were determined. Data were analyzed with the Mann Whitney nonparametric test and P<0.05 was considered significant. Results. C-reactive protein levels and white blood cell counts were significantly higher in inflammation than in the control group (P<0.05). The phagocytosis fluorescence intensity per neutrophil and the percentual of neutrophils expressing phagocytosis were significantly higher (P<0.05) in the test than in the control group. Furthermore, there was significant .NO overproduction by monocytes, (P<0.05). Conclusion: Phagocytosis and .NO production are affected by rheumatic states. This suggests that the increased .NO levels may play a part in the increased oxidative stress in rheumatic diseases in elderly women. J. Clin. Lab. Anal. 25:47-51, 2011. (C) 2011 Wiley-Liss, Inc.
Resumo:
We assessed the association between the causative agents of vaginal discharge and pelvic inflammatory disease (PID) among women attending a rural sexually transmitted disease clinic in South Africa; the role played by coinfection with human immunodeficiency virus type 1 (HIV-1) was studied. Vaginal and cervical specimens were obtained to detect Neisseria gonorrhoeae, Chlamydia trachomatis, Trichomonas vaginalis, and bacterial vaginosis. HIV-1 infection was established by use of serum antibody tests. A total of 696 women with vaginal discharge were recruited, 119 of whom had clinical PID. Patients with trichomoniasis had a significantly higher risk of PID than did women without trichomoniasis (P = .03). PID was not associated with any of the other pathogens. When the patients were stratified according to HIV-1 status, the risk of PID in HIV-1-infected patients with T. vaginalis increased significantly (P = .002); no association was found in patients without HIV-1. T. vaginalis infection of the lower genital tract is associated with a clinical diagnosis of PID in HIV-1-infected women.
Resumo:
TNF-alpha neutralising agents such as Infliximab (Remicade(R)), Etanercept (Enbrel(R)) and the IL-1 receptor antagonist Anakinra (Kineret(R)), are currently used clinically for the treatment of many inflammatory diseases such as Crohn's disease, rheumatoid arthritis, ankylosing spondylitis, juvenile rheumatoid arthritis, psoriatic arthritis and psoriasis. These protein preparations are expensive to manufacture and administer, need to be injected and can cause allergic reactions. An alternative approach to lowering the levels of TNF-alpha and IL-1 beta in inflammatory disease, is to inhibit the enzymes that generate these cytokines using cheaper small molecules. This paper is a broad overview of the progress that has been achieved so far, with respect to small molecule inhibitor design and pharmacological studies (in animals and humans), for the metalloprotease Tumour Necrosis Factor-alpha Converting Enzyme (TACE) and the cysteine protease Caspase-1 (Interieukin-1 beta Converting Enzyme, ICE). Inhibitors of these two enzymes are currently considered to be good therapeutic targets that have the potential to provide relatively inexpensive and orally bioavailable anti-inflammatory agents in the future.
Resumo:
Autoimmune rheumatic diseases are generally considered as a multifactorial aetiology, mainly genetic susceptibility combined with environmental triggers of which bacteria are considered one of the most prominent. Among the rheumatic diseases where bacterial agents are more clearly involved as triggers are: reactive arthritis (ReA), rheumatic fever (RF) and Lyme disease. The role of bacterial infections in inducing other seronegative spondyloarthritis and antiphospholipid antibody syndrome has been hypothesized but is still not proven. The classic form of ReA is associated with the presence of HLA-B27 and is triggered by the urethritis or enteritis causing pathogens Chlamydia trachomatis and the enterobacteria Salmonella, Shigella, and Yersinia, respectively. But several other pathogens such as Brucella, Leptospira, Mycobacteria, Neisseria, Staphylococcus and Streptococcus have also been reported to cause ReA. RF is due to an autoimmune reaction triggered by an untreated throat infection by Streptococcus pyogenes in susceptible individuals. Carditis is the most serious manifestation of RF and HLA-DR7 is predominantly observed in the development of valvular lesions. Lyme disease is a tick-transmitted disease caused by the spirochete Borrelia burgdorferi. Knowledge is limited about how this spirochete interacts with human tissues and cells. Some data report that Borrelia burgdorferi can manipulate resident cells towards a pro- but also anti-inflammatory reaction and persist over a long period of time inside the human body or even inside human cells.
Resumo:
Idiopathic inflammatory myopathies (IIM) are a heterogeneous group of diseases that share some symptoms such as muscular weakness and inflammation of skeletal muscle. Complete recovery of muscle function with pharmacological treatment does not always occur, suggesting that physical inability is a great concern for these patients. In this context, it has been speculated that physical exercise could result in functional benefits to patients with IIM, leading to an improvement in quality of life. In fact, recent studies of polymyositis (PM) and dermatomyositis (DM) support the notion that exercise training improves or at least stabilizes muscle strength and functional ability without inducing disease flares. Importantly, these benefits were observed not only during the chronic phase, but also in the course of active disease. This positive effect was found to be long term, as demonstrated by a six-month significant improvement in exercise capacity and strength. Together, these findings indicate that a well controlled exercise program can be recommended for patients with DM and PM. The optimal exercise modality training and the underlying mechanism for this encouraging response remain to be determined in future studies. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Background Asbestosis is associated with lung cellular and immunological abnormalities. Induced sputum cytology and local and systemic markers of inflammation may be helpful to characterize disease status and progression in these patients. Methods Thirty-nine ex-workers with asbestosis on high-resolution CT (HRCT) and 21 non-exposed controls were evaluated. Sputum cytology and IL-8 in serum and sputum were related to lung function impairment. Results Subjects with asbestosis had reduced sputum cellularity but higher macrophagel neutrophil ratio and % macrophage as compared with controls. Sputum and serum IL-8 were also higher in patients with asbestosis (P < 0.05). In addition, evidence of lung architectural distorption on HRCT was associated with increased levels of serum IL-8. Interestingly, absolute macrophage number was negatively correlated with total lung capacity (r = -0.40; P = 0.04) and serum IL-8 to lung diffiusing capacity (r = -0.45; P = 0.01). Conclusions Occupationally exposed subjects with asbestosis on HRCT have cytologic abnormalities in induced sputum and increased local and systemic pro-inflammatory status which are correlated to functional impairment.
Resumo:
Immunoglobulin A deficiency (IgAD) is considered the most common form of primary immunodeficiency. The majority of IgA-deficient individuals are considered asymptomatic, even though IgAD has been associated with an increased frequency of recurrent infections, allergy, and autoimmune diseases. In this study we evaluate the Natural autoantibodies (NatAbs) reactivity to phosphorylcholine (PC) and to some pro-inflammatory molecules in IgAD with or without autoimmune disorders. We observed that in the absence of IgA there is an enhancement of IgG subclasses functioning as NatAbs against PC. Immunoglobulin G (IgG) against lipopolysaccharide, C-reactive protein, and IgA was found in IgAD, regardless of the autoimmune manifestations. Nonetheless, IgAD patients with autoimmune disease showed significantly higher IgG reactivity against pro-inflammatory molecules, such as cardiolipin, oxidized low-density lipoproteins, and phosphatidylserine, with positive correlation between them. In conclusion, the IgG NatAbs against PC may represent a compensatory defense mechanism against infections and control excess of inflammation, explaining the asymptomatic status in the IgA deficiency.
Resumo:
SETTING: A tertiary care research centre in Sao Paolo, Brazil. OBJECTIVE: To quantify interleukin (IL) 8, tumour necrosis factor alpha (TNF-alpha), vascular endothelial growth factor (VEGF) and transforming growth factor beta(1), (TGF-beta(1))in pleural fluid from tuberculous patients, correlating its values with the histopathological patterns in pleural biopsies. DESIGN: Cytokines were quantified in patients with transudatcs secondary to congestive heart failure (n = 8) and exudates secondary to tuberculosis (TB; n = 39). In parietal pleural biopsies from TB patients, the histological patterns of the inflammatory response were quantified by morphometric analysis (stereological point-counting method). RESULTS: IL-8, TNF-alpha, VEGF and TGF-beta(1) levels were higher in TB than in transudates. A positive correlation existed between components of the fibrinoid exudative phase with pleural fluid IL-8 (R = 0.52, P = 0.004) and VEGF (R = 0.42, P = 0.0021) levels. A negative correlation existed between pleural fluid IL-8 (R = -0.37, P = 0.048) and VEGF (R = -0.44, P = 0.0015) levels with tissue components of fibroproliferation. CONCLUSION: The high pleural levels of TNF-a, IL-8, VEGF and TGF-beta(1) suggest the involvement of these cytokines in the TB immunological response. The positive correlation between pleural fluid IL-8 and VEGF with the components of the acute exudative phase and the negative correlation between these cytokines with the fibroproliferative components suggest a temporary inflammatory response in the pleural space.