870 resultados para Immunoglobulin
Genome-Wide Analyses Suggest Mechanisms Involving Early B-Cell Development in Canine IgA Deficiency.
Resumo:
Immunoglobulin A deficiency (IgAD) is the most common primary immune deficiency disorder in both humans and dogs, characterized by recurrent mucosal tract infections and a predisposition for allergic and other immune mediated diseases. In several dog breeds, low IgA levels have been observed at a high frequency and with a clinical resemblance to human IgAD. In this study, we used genome-wide association studies (GWAS) to identify genomic regions associated with low IgA levels in dogs as a comparative model for human IgAD. We used a novel percentile groups-approach to establish breed-specific cut-offs and to perform analyses in a close to continuous manner. GWAS performed in four breeds prone to low IgA levels (German shepherd, Golden retriever, Labrador retriever and Shar-Pei) identified 35 genomic loci suggestively associated (p <0.0005) to IgA levels. In German shepherd, three genomic regions (candidate genes include KIRREL3 and SERPINA9) were genome-wide significantly associated (p <0.0002) with IgA levels. A ~20kb long haplotype on CFA28, significantly associated (p = 0.0005) to IgA levels in Shar-Pei, was positioned within the first intron of the gene SLIT1. Both KIRREL3 and SLIT1 are highly expressed in the central nervous system and in bone marrow and are potentially important during B-cell development. SERPINA9 expression is restricted to B-cells and peaks at the time-point when B-cells proliferate into antibody-producing plasma cells. The suggestively associated regions were enriched for genes in Gene Ontology gene sets involving inflammation and early immune cell development.
Resumo:
Error-free repair of DNA double-strand breaks (DSBs) is achieved by homologous recombination (HR), and BRCA1 is an important factor for this repair pathway. In the absence of BRCA1-mediated HR, the administration of PARP inhibitors induces synthetic lethality of tumour cells of patients with breast or ovarian cancers. Despite the benefit of this tailored therapy, drug resistance can occur by HR restoration. Genetic reversion of BRCA1-inactivating mutations can be the underlying mechanism of drug resistance, but this does not explain resistance in all cases. In particular, little is known about BRCA1-independent restoration of HR. Here we show that loss of REV7 (also known as MAD2L2) in mouse and human cell lines re-establishes CTIP-dependent end resection of DSBs in BRCA1-deficient cells, leading to HR restoration and PARP inhibitor resistance, which is reversed by ATM kinase inhibition. REV7 is recruited to DSBs in a manner dependent on the H2AX-MDC1-RNF8-RNF168-53BP1 chromatin pathway, and seems to block HR and promote end joining in addition to its regulatory role in DNA damage tolerance. Finally, we establish that REV7 blocks DSB resection to promote non-homologous end-joining during immunoglobulin class switch recombination. Our results reveal an unexpected crucial function of REV7 downstream of 53BP1 in coordinating pathological DSB repair pathway choices in BRCA1-deficient cells.
Resumo:
The immune system has developed strategies to maintain a homeostatic relationship with the resident microbiota. IgA is central in holding this relationship, as the most dominant immunoglobulin isotype at the mucosal surface of the intestine. Recent studies report a role for IgA in shaping the composition of the intestinal microbiota and exploit strategies to characterise IgA-binding bacteria for their inflammatory potential. We review these findings here, and place them in context of the current understanding of the range of microorganisms that contribute to the IgA repertoire and the pathways that determine the quality of the IgA response. We examine why only certain intestinal microbes are coated with IgA, and discuss how understanding the determinants of this specific responsiveness may provide insight into diseases associated with dysbiosis.
Resumo:
Immunoassays are essential in the workup of patients with suspected heparin-induced thrombocytopenia. However, the diagnostic accuracy is uncertain with regard to different classes of assays, antibody specificities, thresholds, test variations, and manufacturers. We aimed to assess diagnostic accuracy measures of available immunoassays and to explore sources of heterogeneity. We performed comprehensive literature searches and applied strict inclusion criteria. Finally, 49 publications comprising 128 test evaluations in 15 199 patients were included in the analysis. Methodological quality according to the revised tool for quality assessment of diagnostic accuracy studies was moderate. Diagnostic accuracy measures were calculated with the unified model (comprising a bivariate random-effects model and a hierarchical summary receiver operating characteristics model). Important differences were observed between classes of immunoassays, type of antibody specificity, thresholds, application of confirmation step, and manufacturers. Combination of high sensitivity (>95%) and high specificity (>90%) was found in 5 tests only: polyspecific enzyme-linked immunosorbent assay (ELISA) with intermediate threshold (Genetic Testing Institute, Asserachrom), particle gel immunoassay, lateral flow immunoassay, polyspecific chemiluminescent immunoassay (CLIA) with a high threshold, and immunoglobulin G (IgG)-specific CLIA with low threshold. Borderline results (sensitivity, 99.6%; specificity, 89.9%) were observed for IgG-specific Genetic Testing Institute-ELISA with low threshold. Diagnostic accuracy appears to be inadequate in tests with high thresholds (ELISA; IgG-specific CLIA), combination of IgG specificity and intermediate thresholds (ELISA, CLIA), high-dose heparin confirmation step (ELISA), and particle immunofiltration assay. When making treatment decisions, clinicians should be a aware of diagnostic characteristics of the tests used and it is recommended they estimate posttest probabilities according to likelihood ratios as well as pretest probabilities using clinical scoring tools.
Resumo:
Eosinophilic esophagitis (EoE) is a chronic disease characterized clinically by symptoms of esophageal dysfunction and histologically by eosinophil-predominant inflammation. EoE is frequently associated with concomitant atopic diseases and immunoglobulin E (IgE) sensitization to food allergens in children as well as to aeroallergens and cross-reactive plant allergen components in adults. Patients with EoE respond well to elemental and empirical food elimination diets. Recent research has, however, indicated that the pathogenesis of EoE is distinct from IgE-mediated food allergy. In this review, we discuss the individual roles of epithelial barrier defects, dysregulated innate and adaptive immune responses, and of microbiota in the pathogenesis of EoE. Although food has been recognized as a trigger factor of EoE, the mechanism by which it initiates or facilitates eosinophilic inflammation appears to be largely independent of IgE and needs to be further investigated. Understanding the pathogenic role of food in EoE is a prerequisite for the development of specific diagnostic tools and targeted therapeutic procedures. This article is protected by copyright. All rights reserved.
Resumo:
BACKGROUND Acquired thrombotic thrombocytopenic purpura (TTP) is caused by aggregation of platelets on ultralarge von Willebrand factor multimers. This microvascular thrombosis causes multiorgan ischemia with potentially life-threatening complications. Daily plasma exchange and immunosuppressive therapies induce remission, but mortality and morbidity due to microthrombosis remain high. METHODS Caplacizumab, an anti-von Willebrand factor humanized single-variable-domain immunoglobulin (Nanobody), inhibits the interaction between ultralarge von Willebrand factor multimers and platelets. In this phase 2, controlled study, we randomly assigned patients with acquired TTP to subcutaneous caplacizumab (10 mg daily) or placebo during plasma exchange and for 30 days afterward. The primary end point was the time to a response, defined as confirmed normalization of the platelet count. Major secondary end points included exacerbations and relapses. RESULTS Seventy-five patients underwent randomization (36 were assigned to receive caplacizumab, and 39 to receive placebo). The time to a response was significantly reduced with caplacizumab as compared with placebo (39% reduction in median time, P=0.005). Three patients in the caplacizumab group had an exacerbation, as compared with 11 patients in the placebo group. Eight patients in the caplacizumab group had a relapse in the first month after stopping the study drug, of whom 7 had ADAMTS13 activity that remained below 10%, suggesting unresolved autoimmune activity. Bleeding-related adverse events, most of which were mild to moderate in severity, were more common with caplacizumab than with placebo (54% of patients vs. 38%). The frequencies of other adverse events were similar in the two groups. Two patients in the placebo group died, as compared with none in the caplacizumab group. CONCLUSIONS Caplacizumab induced a faster resolution of the acute TTP episode than did placebo. The platelet-protective effect of caplacizumab was maintained during the treatment period. Caplacizumab was associated with an increased tendency toward bleeding, as compared with placebo. (Funded by Ablynx; ClinicalTrials.gov number, NCT01151423.).
Resumo:
Quiescent human B cells are postulated to go through activation and proliferation phases before undergoing differentiative phase for immunoglobulin secretion. The present studies address some of the aspects of activation and proliferation phase of normal human B cells. The definitions of signals responsible for B cell activation and proliferation resulted in the development of a highly specific, reproducible B cell growth factor (BCGF) assay. This BCGF bioassay utilizes activation by rabbit anti-human IgM-antibody. The functional specificity of this assay for measuring BCGF activity was demonstrated by the finding that target B cells proliferated but did not differentiate. The factor specificity was determined by specific absorption of BCGF by anti-IgM activated B cells. This assay was utilized for the studies of T-B cell collaboration and the essential function of monocytes in the production and/or release of B cell growth factor in a syngeneic in vitro system. It is apparent that highly purified T cells are poor producers of BCGF by themselves and require monocytes to secrete significant quantities of BCGF upon PHA stimulation. Macrophage soluble factor, Interleukin 1, is capable of replacing monocyte function for the release of BCGF by activated T cells. In our studies, B cells are incapable to function as accessory cells to replace monocyte function. Normal B cells are also not capable of producing BCGF under our experimental observations. However, the addition of these B cells at an optimum cell density (T:B ratio 1:1) doubles the monocyte dependent release of BCGF by syngeneic T cells. The augmentative role of B cells is expanded to understand the mechanism of BCGF release by T cells. It is observed from our studies that DR antigen of B cell surface is involved in the release of BCGF. The functional difference between DR of B cells and monocytes is observed as IL-1 could replace DR-treated monocytes whereas failed to replace DR-treated B cells for the release of BCGF by T cells. This functional difference may be attributed to the reported microheterogeneity in DR of B cells and monocytes. The addition of irradiated B cells increased the monocyte dependent T cell proliferation, suggesting the increase of T cell pool for BCGF release. In summary, the development of a biological assay specific for B cell growth factor led to the delineation of an interesting role of B cells in the release of its own growth factor by T cells. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI ^
Resumo:
Preeclampsia is a disease that affects 3–5% of all pregnancies. The cause is unknown and there is currently no treatment. The disease poses significant health risks to both the mother and the fetus. To date, research on the topic has not produced a convincing cause for the development of the hallmark symptoms of preeclampsia. The hypothesis of an agonistic autoimmune response to the AT1 receptor is presented. Immunoglobulin fractions from normotensive and preeclampsia patients were prepared for experimental tests. Model systems were tested in three categories to determine if AT 1 receptor specific activation and receptor-ligand interaction was caused by a suspected autoantibody. Activation was found in rat neonatal cardiornyocytes that caused an increased contraction rate. This activity was found in preeclampsia patients, absent in normotensive patients. The activation was antagonized by losartan, an AT1 receptor antagonist, and by epitope peptide competition of the receptor-ligand type interaction. This epitope was the 7 amino acid peptide fragment, AFHYESQ, a sequence present in the second extracellular loop of the AT1 receptor. The patterns of AT1 receptor activation were also found in a human trophoblast cell line, HTR8, with an effect on Pai-1 secretion, a factor that plays a role in preventing hypercoagulation. In human mesangial cells, the AT1 receptor autoantibody present in the immunoglobulin fraction from preeclampsia patients was found to stimulate the secretion of Pai-1, and IL-6, a factor that plays a role in the activation of an inflammatory response. This activity was found in samples from preeclampsia patients, but absent in normotensive patients. Tests including losartan, AFHYESQ, and a non-competitive peptide demonstrated that the secretion of Pai-1 and IL-6 met the criteria for AT1 receptor activation by the suspected agonistic autoantibody. These three model systems address relevant pathophysiology for preeclampsia patients, including increased cardiac output, abnormal placentation, and renal damage. The AT1 receptor agonistic autoantibody is potentially a key player in the development of the pathology and symptoms of preeclampsia. ^
Resumo:
Staphylococcus aureus is a globally prevalent pathogen that can cause a wide variety of acute and chronic diseases in both adults and children, in both immune susceptible populations and healthy individuals. Its ability to cause persistent infections has been linked to multiple immune evasion strategies, including Efb-mediated complement inhibition. As new multi-drug-resistant strains emerge, therapeutic alternatives to traditional antibiotics must be developed. These experiments assessed the ability of healthy patient immunoglobulin to cleave Efb and disable the complement-inhibitory properties of Efb in vitro. Levels of immunoglobulin-mediated Efb catalysis varied both between immunoglobulin isoform/isotype and between individuals. Serum IgG showed the strongest catalytic activity of the immunoglobulin isotypes tested. Additionally, IgG hydrolyzed the virulence factor in a way that enabled only minimal binding to the complement component C3b, effectively blocking Efb-mediated inhibition of complement lysis. Salivary IgA and serum IgM did not block Efb-mediated inhibition of complement. Catalytic IgG selectively cleaved Efb and showed no cleavage of a variety of other proteins tested. Catalytic activity of IgG was inhibited by serine protease inhibitors, but not by other protease inhibitors, suggesting a serine-protease mechanism of catalysis. It is proposed that varying concentrations and activity levels of catalytic IgG between healthy individuals and those with current or recurrent S. aureus infections in both adult and pediatric populations be studied in order to assess the potential effectiveness of passive immunization therapy with catalytic monoclonal IgG. ^
Resumo:
Disruption of the mechanisms that regulate cell-cycle checkpoints, DNA repair, and apoptosis results in genomic instability and often leads to the development of cancer. In response to double stranded breaks (DSBs) as induced by ionizing radiation (IR), generated during DNA replication, or through immunoglobulin heavy chain (IgH) rearrangements in T and B cells of lymphoid origin, the protein kinases ATM and ATR are central players that activate signaling pathways leading to DSB repair. p53 binding protein 1 (53BP1) participates in the repair of DNA double stranded breaks (DSBs) where it is recruited to or near sites of DNA damage. In addition to its well established role in DSB repair, multiple lines of evidence implicate 53BP1 in transcription which stem from its initial discovery as a p53 binding protein in a yeast two-hybrid screen. However, the mechanisms behind the role of 53BP1 in these processes are not well understood. ^ 53BP1 possesses several motifs that are likely important for its role in DSB repair including two BRCA1 C-terminal repeats, tandem Tudor domains, and a variety of phosphorylation sites. In addition to these motifs, we identified a glycine and arginine rich region (GAR) upstream of the Tudor domains, a sequence that is oftentimes serves as a site for protein arginine methylation. The focus of this project was to characterize the methylation of 53BP1 and to evaluate how methylation influenced the role of 53BP1 as a tumor suppressor. ^ Using a variety of biochemical techniques, we demonstrated that 53BP1 is methylated by the PRMT1 methyltransferase in vivo. Moreover, GAR methylation occurs on arginine residues in an asymmetric manner. We further show that sequences upstream of the Tudor domains that do not include the GAR stretch are sufficient for 53BP1 oligomerization in vivo. While investigating the role of arginine methylation in 53BP1 function, we discovered that 53BP1 associates with proteins of the general transcription apparatus as well as to other factors implicated in coordinating transcription with chromatin function. Collectively, these data support a role for 53BP1 in regulating transcription and provide insight into the possible mechanisms by which this occurs. ^
Resumo:
Staphylococcus aureus is an important human pathogen of global health significance, whose frequency is increasing and whose persistence and versatility allow it to remain established in communities worldwide. An observed significant increase in infections, particularly in children with no predisposing risk factors or medical conditions, led to an investigation into pediatric humoral immune response to Panton-Valentine Leukocidin (PVL) and to other antigens expressed by S. aureus that represent the important classes of virulence activities. Patients who were diagnosed with staphylococcal infections were enrolled (n=60), and serum samples collected at the time of admission were analyzed using ELISA and Western blot to screen for immune response to the panel of recombinant proteins. The dominant circulating immunoglobulin titers in this pediatric population were primarily IgG, were specific, and were directed against LukF and LukS, while suppression of other important virulence factors in the presence of PVL was suggested. Patients with invasive infections (osteomyelitis, pneumonia or myositis) had higher titers against LukF and LukS compared to patients with non-invasive infections (abscesses, cellulitis or lymphadenitis). In patients with osteomyelitis, antibody responses to LukF and LukS were higher than antibody responses to any other virulence factor examined. This description of immune response to selected virulence factors of S. aureus caused by isolates of the USA300 lineage in children is novel. Antibody titers also correlated with markers of inflammation. The significance of these correlations remains to be understood.^
Resumo:
Helicobacter pylori infection is frequently acquired during childhood. This microorganism is known to cause gastritis, and duodenal ulcer in pediatric patients, however most children remain completely asymptomatic to the infection. Currently there is no consensus in favor of treatment of H. pylori infection in asymptomatic children. The firstline of treatment for this population is triple medication therapy including two antibacterial agents and one proton pump inhibitor for a 2 week duration course. Decreased eradication rate of less than 75% has been documented with the use of this first-line therapy but novel tinidazole-containing quadruple sequential therapies seem worth investigating. None of the previous studies on such therapy has been done in the United States of America. As part of an iron deficiency anemia study in asymptomatic H. pylori infected children of El Paso, Texas, we conducted a secondary data analysis of study data collected in this trial to assess the effectiveness of this tinidazole-containing sequential quadruple therapy compared to placebo on clearing the infection. Subjects were selected from a group of asymptomatic children identified through household visits to 11,365 randomly selected dwelling units. After obtaining parental consent and child assent a total of 1,821 children 3-10 years of age were screened and 235 were positive to a novel urine immunoglobulin class G antibodies test for H. pylori infection and confirmed as infected using a 13C urea breath test, using a hydrolysis urea rate >10 μg/min as cut-off value. Out of those, 119 study subjects had a complete physical exam and baseline blood work and were randomly allocated to four groups, two of which received active H. pylori eradication medication alone or in combination with iron, while the other two received iron only or placebo only. Follow up visits to their houses were done to assess compliance and occurrence of adverse events and at 45+ days post-treatment, a second urea breath test was performed to assess their infection status. The effectiveness was primarily assessed on intent to treat basis (i.e., according to their treatment allocation), and the proportion of those who cleared their infection using a cut-off value >10 μg/min of for urea hydrolysis rate, was the primary outcome. Also we conducted analysis on a per-protocol basis and according to the cytotoxin associated gene A product of the H. pylori infection status. Also we compared the rate of adverse events across the two arms. On intent-to-treat and per-protocol analyses, 44.3% and 52.9%, respectively, of the children receiving the novel quadruple sequential eradication cleared their infection compared to 12.2% and 15.4% in the arms receiving iron or placebo only, respectively. Such differences were statistically significant (p<0.001). The study medications were well accepted and safe. In conclusion, we found in this study population, of mostly asymptomatically H. pylori infected children, living in the US along the border with Mexico, that the quadruple sequential eradication therapy cleared the infection in only half of the children receiving this treatment. Research is needed to assess the antimicrobial susceptibility of the strains of H. pylori infecting this population to formulate more effective therapies. ^
Resumo:
Respiratory Syncytial Virus (RSV) is a major cause of respiratory tract infections in immunocompromised patients such as children less than 2 years, premature infants with congenital heart disease and chronic lung disease, elderly patients and patients who have undergone hematopoietic stem cell transplant (HSCT). HSCT patients are at high risk of RSV infection, at increased risk of developing pneumonia, and RSV-related mortality. Immunodeficiency can be a major risk factor for severe infection & mortality. Therapy of RSV infection with Ribavirin, Palivizumab and Immunoglobulin has shown to reduce the risk of progression to LRI and mortality, especially if initiated early in the disease. Data on RSV infection in HSCT patients is limited, especially at various levels of immunodeficiency. 323 RSV infections in HSCT patients have been identified between 1/1995 and 8/2009 at University of Texas M D Anderson Cancer Center (UTMDACC). In this proposed study, we attempted to analyze a de-identified database of these cases and describe the epidemiologic characteristics of RSV infection in HSCT patients, the course of the infection, rate of development of pneumonia and RSV-related mortality in HSCT patients at UTMDACC.^ Key words: RSV infections, HSCT patients ^
Resumo:
Periodontal diseases (PD) are infectious, inflammatory, and tissue destructive events which affect the periodontal ligament that surround and support the teeth. Periodontal diseases are the major cause of tooth loss after age 35, with gingivitis and periodontitis affecting 75% of the adult population. A select group of bacterial organisms are associated with periodontal pathogenesis. There is a direct association between oral hygiene and prevention of PD. The importance of genetic differences and host immune response capabilities in determining host, susceptibility or resistance to PD has not been established. This study examined the risk factors and serum (humoral) immune response to periodontal diseased-associated pathogens in a 55 to 80+ year old South Texas study sample with PD. This study sample was described by: age, sex, ethnicity, the socioeconomic factors marital status, income and occupation, IgG, IgA, IgM immunoglobulin status, and the autoimmune response markers rheumatoid factor (RF) and antinuclear antibody (ANA). These variables were used to determine the risk factors associated with development of PD. Serum IgG, IgA, IgM antibodies to bacterial antigens provided evidence for disease exposure.^ A causal model for PD was constructed from associations for risk factors (ethnicity, marital status, income, and occupation) with dental exam and periodontitis. The multiple correlation between PD and ethnicity, income and dental exam was significant. Hispanics of low income were least likely to have had a dental exam in the last year and most likely to have PD. The etiologic agents for PD, as evidenced by elevated humoral antibody responses, were the Gram negative microorganisms Bacteroides gingivalis, serotypes FDC381 and SUNYaBA7A1-28, and Wolinella recta. Recommendation for a PD prevention and control program are provided. ^
Resumo:
Diarrhea is a major public health problem in developing countries among infants and young children. Not all episodes of diarrhea are confirmed as infectious, suggesting alternate mechanisms. One such is immunoglobulin E (IgE) mediated or allergic diarrhea that can be seen in food allergy. In order to determine the relation between allergic gastroenteritis and feeding practice, a cohort of 152 infants were followed from birth to one year age in a rural community of Egypt between October, 1987 to April, 1988 were analyzed. In multivariate analysis of the data, statistically conclusive higher risk had been observed with presence of factors, like consumption of milk pudding (RR = 7.4, CI = 1.5-36.2 and p = 0.01), infant's age 3-6 months (RR = 7.7, CI = 1.3-45.9 and p = 0.02), infants whose mothers were vaccinated antenatally (RR = 3.1, CI = 1.3-7.0 and p = 1.3-7.0, p = 0.0) and wet-nursed infants (RR = 2.7, CI = 1.1-6.5 and p = 0.02). In contrast, infants who were completely breast-fed (RR = 0.13, CI = 0.02-0.6 and p = 0.01), and infants family owning a television set (RR = 0.29, CI = 0.1-0.6 and p = 0.0) were less likely to develop allergic gastroenteritis. The role of IgE on development of persistent diarrhea was also examined in a nested case-control design. Multivariate analysis revealed a significant association between detection of fecal IgE and development of persistent diarrhea compared to acute diarrhea (OR = 3.32, CI = 1.0-10.9 and p = 0.04) and health or non diarrhea (OR = 4.8, CI = 1.07-21.7 and p = 0.03) controls. ^