919 resultados para Image-based mesh generation
Resumo:
The Melan-A/MART-1 gene, which is expressed by normal melanocytes as well as by most fresh melanoma samples and melanoma cell lines, codes for Ags recognized by tumor-reactive CTL. HLA-A*0201-restricted Melan-A-specific CTL recognize primarily the Melan-A(27-35) (AAGIGILTV) and the Melan-A(26-35) (EAAGIGILTV) peptides. The sequences of these two peptides are not necessarily optimal as far as binding to HLA-A*0201 is concerned, since both lack one of the dominant anchor amino acid residues (leucine or methionine) at position 2. In this study we introduced single amino acid substitutions in either one of the two natural peptide sequences with the aim of improving peptide binding to HLA-A*0201 and/or recognition by specific CTL. Surprisingly, analogues of the Melan-A(27-35) peptide, which bound more efficiently than the natural nonapeptide to HLA-A*0201, were poorly recognized by tumor-reactive CTL. In contrast, among the Melan-A(26-35) peptide analogues tested, the peptide ELAGIGILTV was not only able to display stable binding to HLA-A2.1 but was also recognized more efficiently than the natural peptide by two short-term cultured tumor-infiltrated lymph node cell cultures as well as by five of five tumor-reactive CTL clones. Moreover, in vitro generation of tumor-reactive CTL by stimulation of PBMC from HLA-A*0201 melanoma patients with this particular peptide analogue was much more efficient than that observed with either one of the two natural peptides. These results suggest that the Melan-A(26-35) peptide analogue ELAGIGILTV may be more immunogenic than the natural peptides in HLA-A*0201 melanoma patients and should thus be considered as a candidate for future peptide-based vaccine trials.
Resumo:
Introduction: Quantitative measures of degree of lumbar spinal stenosis (LSS) such as antero-posterior diameter of the canal or dural sac cross sectional area vary widely and do not correlate with clinical symptoms or results of surgical decompression. In an effort to improve quantification of stenosis we have developed a grading system based on the morphology of the dural sac and its contents as seen on T2 axial images. The grading comprises seven categories ranging form normal to the most severe stenosis and takes into account the ratio of rootlet/CSF content. Material and methods: Fifty T2 axial MRI images taken at disc level from twenty seven symptomatic lumbar spinal stenosis patients who underwent decompressive surgery were classified into seven categories by five observers and reclassified 2 weeks later by the same investigators. Intra- and inter-observer reliability of the classification were assessed using Cohen's and Fleiss' kappa statistics, respectively. Results: Generally, the morphology grading system itself was well adopted by the observers. Its success in application is strongly influenced by the identification of the dural sac. The average intraobserver Cohen's kappa was 0.53 ± 0.2. The inter-observer Fleiss' kappa was 0.38 ± 0.02 in the first rating and 0.3 ± 0.03 in the second rating repeated after two weeks. Discussion: In this attempt, the teaching of the observers was limited to an introduction to the general idea of the morphology grading system and one example MRI image per category. The identification of the dimension of the dural sac may be a difficult issue in absence of complete T1 T2 MRI image series as it was the case here. The similarity of the CSF to possibly present fat on T2 images was the main reason of mismatch in the assignment of the cases to a category. The Fleiss correlation factors of the five observers are fair and the proposed morphology grading system is promising.
Resumo:
The drug discovery process has been deeply transformed recently by the use of computational ligand-based or structure-based methods, helping the lead compounds identification and optimization, and finally the delivery of new drug candidates more quickly and at lower cost. Structure-based computational methods for drug discovery mainly involve ligand-protein docking and rapid binding free energy estimation, both of which require force field parameterization for many drug candidates. Here, we present a fast force field generation tool, called SwissParam, able to generate, for arbitrary small organic molecule, topologies, and parameters based on the Merck molecular force field, but in a functional form that is compatible with the CHARMM force field. Output files can be used with CHARMM or GROMACS. The topologies and parameters generated by SwissParam are used by the docking software EADock2 and EADock DSS to describe the small molecules to be docked, whereas the protein is described by the CHARMM force field, and allow them to reach success rates ranging from 56 to 78%. We have also developed a rapid binding free energy estimation approach, using SwissParam for ligands and CHARMM22/27 for proteins, which requires only a short minimization to reproduce the experimental binding free energy of 214 ligand-protein complexes involving 62 different proteins, with a standard error of 2.0 kcal mol(-1), and a correlation coefficient of 0.74. Together, these results demonstrate the relevance of using SwissParam topologies and parameters to describe small organic molecules in computer-aided drug design applications, together with a CHARMM22/27 description of the target protein. SwissParam is available free of charge for academic users at www.swissparam.ch.
Resumo:
We propose a method for brain atlas deformation in the presence of large space-occupying tumors, based on an a priori model of lesion growth that assumes radial expansion of the lesion from its starting point. Our approach involves three steps. First, an affine registration brings the atlas and the patient into global correspondence. Then, the seeding of a synthetic tumor into the brain atlas provides a template for the lesion. The last step is the deformation of the seeded atlas, combining a method derived from optical flow principles and a model of lesion growth. Results show that a good registration is performed and that the method can be applied to automatic segmentation of structures and substructures in brains with gross deformation, with important medical applications in neurosurgery, radiosurgery, and radiotherapy.
Resumo:
Atlas registration is a recognized paradigm for the automatic segmentation of normal MR brain images. Unfortunately, atlas-based segmentation has been of limited use in presence of large space-occupying lesions. In fact, brain deformations induced by such lesions are added to normal anatomical variability and they may dramatically shift and deform anatomically or functionally important brain structures. In this work, we chose to focus on the problem of inter-subject registration of MR images with large tumors, inducing a significant shift of surrounding anatomical structures. First, a brief survey of the existing methods that have been proposed to deal with this problem is presented. This introduces the discussion about the requirements and desirable properties that we consider necessary to be fulfilled by a registration method in this context: To have a dense and smooth deformation field and a model of lesion growth, to model different deformability for some structures, to introduce more prior knowledge, and to use voxel-based features with a similarity measure robust to intensity differences. In a second part of this work, we propose a new approach that overcomes some of the main limitations of the existing techniques while complying with most of the desired requirements above. Our algorithm combines the mathematical framework for computing a variational flow proposed by Hermosillo et al. [G. Hermosillo, C. Chefd'Hotel, O. Faugeras, A variational approach to multi-modal image matching, Tech. Rep., INRIA (February 2001).] with the radial lesion growth pattern presented by Bach et al. [M. Bach Cuadra, C. Pollo, A. Bardera, O. Cuisenaire, J.-G. Villemure, J.-Ph. Thiran, Atlas-based segmentation of pathological MR brain images using a model of lesion growth, IEEE Trans. Med. Imag. 23 (10) (2004) 1301-1314.]. Results on patients with a meningioma are visually assessed and compared to those obtained with the most similar method from the state-of-the-art.
Resumo:
In this paper, we propose two active learning algorithms for semiautomatic definition of training samples in remote sensing image classification. Based on predefined heuristics, the classifier ranks the unlabeled pixels and automatically chooses those that are considered the most valuable for its improvement. Once the pixels have been selected, the analyst labels them manually and the process is iterated. Starting with a small and nonoptimal training set, the model itself builds the optimal set of samples which minimizes the classification error. We have applied the proposed algorithms to a variety of remote sensing data, including very high resolution and hyperspectral images, using support vector machines. Experimental results confirm the consistency of the methods. The required number of training samples can be reduced to 10% using the methods proposed, reaching the same level of accuracy as larger data sets. A comparison with a state-of-the-art active learning method, margin sampling, is provided, highlighting advantages of the methods proposed. The effect of spatial resolution and separability of the classes on the quality of the selection of pixels is also discussed.
Resumo:
Computed Tomography (CT) represents the standard imaging modality for tumor volume delineation for radiotherapy treatment planning of retinoblastoma despite some inherent limitations. CT scan is very useful in providing information on physical density for dose calculation and morphological volumetric information but presents a low sensitivity in assessing the tumor viability. On the other hand, 3D ultrasound (US) allows a highly accurate definition of the tumor volume thanks to its high spatial resolution but it is not currently integrated in the treatment planning but used only for diagnosis and follow-up. Our ultimate goal is an automatic segmentation of gross tumor volume (GTV) in the 3D US, the segmentation of the organs at risk (OAR) in the CT and the registration of both modalities. In this paper, we present some preliminary results in this direction. We present 3D active contour-based segmentation of the eye ball and the lens in CT images; the presented approach incorporates the prior knowledge of the anatomy by using a 3D geometrical eye model. The automated segmentation results are validated by comparing with manual segmentations. Then, we present two approaches for the fusion of 3D CT and US images: (i) landmark-based transformation, and (ii) object-based transformation that makes use of eye ball contour information on CT and US images.
Resumo:
This PhD thesis addresses the issue of scalable media streaming in large-scale networking environments. Multimedia streaming is one of the largest sink of network resources and this trend is still growing as testified by the success of services like Skype, Netflix, Spotify and Popcorn Time (BitTorrent-based). In traditional client-server solutions, when the number of consumers increases, the server becomes the bottleneck. To overcome this problem, the Content-Delivery Network (CDN) model was invented. In CDN model, the server copies the media content to some CDN servers, which are located in different strategic locations on the network. However, they require heavy infrastructure investment around the world, which is too expensive. Peer-to-peer (P2P) solutions are another way to achieve the same result. These solutions are naturally scalable, since each peer can act as both a receiver and a forwarder. Most of the proposed streaming solutions in P2P networks focus on routing scenarios to achieve scalability. However, these solutions cannot work properly in video-on-demand (VoD) streaming, when resources of the media server are not sufficient. Replication is a solution that can be used in these situations. This thesis specifically provides a family of replication-based media streaming protocols, which are scalable, efficient and reliable in P2P networks. First, it provides SCALESTREAM, a replication-based streaming protocol that adaptively replicates media content in different peers to increase the number of consumers that can be served in parallel. The adaptiveness aspect of this solution relies on the fact that it takes into account different constraints like bandwidth capacity of peers to decide when to add or remove replicas. SCALESTREAM routes media blocks to consumers over a tree topology, assuming a reliable network composed of homogenous peers in terms of bandwidth. Second, this thesis proposes RESTREAM, an extended version of SCALESTREAM that addresses the issues raised by unreliable networks composed of heterogeneous peers. Third, this thesis proposes EAGLEMACAW, a multiple-tree replication streaming protocol in which two distinct trees, named EAGLETREE and MACAWTREE, are built in a decentralized manner on top of an underlying mesh network. These two trees collaborate to serve consumers in an efficient and reliable manner. The EAGLETREE is in charge of improving efficiency, while the MACAWTREE guarantees reliability. Finally, this thesis provides TURBOSTREAM, a hybrid replication-based streaming protocol in which a tree overlay is built on top of a mesh overlay network. Both these overlays cover all peers of the system and collaborate to improve efficiency and low-latency in streaming media to consumers. This protocol is implemented and tested in a real networking environment using PlanetLab Europe testbed composed of peers distributed in different places in Europe.
Resumo:
Several features that can be extracted from digital images of the sky and that can be useful for cloud-type classification of such images are presented. Some features are statistical measurements of image texture, some are based on the Fourier transform of the image and, finally, others are computed from the image where cloudy pixels are distinguished from clear-sky pixels. The use of the most suitable features in an automatic classification algorithm is also shown and discussed. Both the features and the classifier are developed over images taken by two different camera devices, namely, a total sky imager (TSI) and a whole sky imager (WSC), which are placed in two different areas of the world (Toowoomba, Australia; and Girona, Spain, respectively). The performance of the classifier is assessed by comparing its image classification with an a priori classification carried out by visual inspection of more than 200 images from each camera. The index of agreement is 76% when five different sky conditions are considered: clear, low cumuliform clouds, stratiform clouds (overcast), cirriform clouds, and mottled clouds (altocumulus, cirrocumulus). Discussion on the future directions of this research is also presented, regarding both the use of other features and the use of other classification techniques
Resumo:
Combined positron emission tomography and computed tomography (PET/CT) scanners play a major role in medicine for in vivo imaging in an increasing number of diseases in oncology, cardiology, neurology, and psychiatry. With the advent of short-lived radioisotopes other than 18F and newer scanners, there is a need to optimize radioisotope activity and acquisition protocols, as well as to compare scanner performances on an objective basis. The Discovery-LS (D-LS) was among the first clinical PET/CT scanners to be developed and has been extensively characterized with older National Electrical Manufacturer Association (NEMA) NU 2-1994 standards. At the time of publication of the latest version of the standards (NU 2-2001) that have been adapted for whole-body imaging under clinical conditions, more recent models from the same manufacturer, i.e., Discovery-ST (D-ST) and Discovery-STE (D-STE), were commercially available. We report on the full characterization both in the two- and three-dimensional acquisition mode of the D-LS according to latest NEMA NU 2-2001 standards (spatial resolution, sensitivity, count rate performance, accuracy of count losses, and random coincidence correction and image quality), as well as a detailed comparison with the newer D-ST widely used and whose characteristics are already published.
Resumo:
The high complexity of cortical convolutions in humans is very challenging both for engineers to measure and compare it, and for biologists and physicians to understand it. In this paper, we propose a surface-based method for the quantification of cortical gyrification. Our method uses accurate 3-D cortical reconstruction and computes local measurements of gyrification at thousands of points over the whole cortical surface. The potential of our method to identify and localize precisely gyral abnormalities is illustrated by a clinical study on a group of children affected by 22q11 Deletion Syndrome, compared to control individuals.
Resumo:
We investigated the relationship between being bullied and measured body weight and perceived body weight among adolescents of a middle-income sub Saharan African country. Our data originated from the Global School-based Health Survey, which targets adolescents aged 13-15 years. Student weights and heights were measured before administrating the questionnaire which included questions about personal data, health behaviors and being bullied. Standard criteria were used to assess thinness, overweight and obesity. Among 1,006 participants who had complete data, 16.5% (95%CI 13.3-20.2) reported being bullied ≥ 3 days during the past 30 days; 13.4% were thin, 16.8% were overweight and 7.6% were obese. Categories of actual weight and of perceived weight correlated only moderately (Spearman correlation coefficient 0.37 for boys and 0.57 for girls; p < 0.001). In univariate analysis, both actual obesity (OR 1.76; p = 0.051) and perception of high weight (OR 1.63 for "slightly overweight"; OR 2.74 for "very overweight", both p < 0.05) were associated with being bullied. In multivariate analysis, ORs for categories of perceived overweight were virtually unchanged while ORs for actual overweight and obesity were substantially attenuated, suggesting a substantial role of perceived weight in the association with being bullied. Actual underweight and perceived thinness also tended to be associated with being bullied, although not significantly. Our findings suggest that more research attention be given to disentangling the significant association between body image, overweight and bullying among adolescents. Further studies in diverse populations are warranted.
Resumo:
A new parameter is introduced: the lightning potential index (LPI), which is a measure of the potential for charge generation and separation that leads to lightning flashes in convective thunderstorms. The LPI is calculated within the charge separation region of clouds between 0 C and 20 C, where the noninductive mechanism involving collisions of ice and graupel particles in the presence of supercooled water is most effective. As shown in several case studies using the Weather Research and Forecasting (WRF) model with explicit microphysics, the LPI is highly correlated with observed lightning. It is suggested that the LPI may be a useful parameter for predicting lightning as well as a tool for improving weather forecasting of convective storms and heavy rainfall.
Resumo:
In this paper we present a Bayesian image reconstruction algorithm with entropy prior (FMAPE) that uses a space-variant hyperparameter. The spatial variation of the hyperparameter allows different degrees of resolution in areas of different statistical characteristics, thus avoiding the large residuals resulting from algorithms that use a constant hyperparameter. In the first implementation of the algorithm, we begin by segmenting a Maximum Likelihood Estimator (MLE) reconstruction. The segmentation method is based on using a wavelet decomposition and a self-organizing neural network. The result is a predetermined number of extended regions plus a small region for each star or bright object. To assign a different value of the hyperparameter to each extended region and star, we use either feasibility tests or cross-validation methods. Once the set of hyperparameters is obtained, we carried out the final Bayesian reconstruction, leading to a reconstruction with decreased bias and excellent visual characteristics. The method has been applied to data from the non-refurbished Hubble Space Telescope. The method can be also applied to ground-based images.
Resumo:
Spatial resolution is a key parameter of all remote sensing satellites and platforms. The nominal spatial resolution of satellites is a well-known characteristic because it is directly related to the area in ground that represents a pixel in the detector. Nevertheless, in practice, the actual resolution of a specific image obtained from a satellite is difficult to know precisely because it depends on many other factors such as atmospheric conditions. However, if one has two or more images of the same region, it is possible to compare their relative resolutions. In this paper, a wavelet-decomposition-based method for the determination of the relative resolution between two remotely sensed images of the same area is proposed. The method can be applied to panchromatic, multispectral, and mixed (one panchromatic and one multispectral) images. As an example, the method was applied to compute the relative resolution between SPOT-3, Landsat-5, and Landsat-7 panchromatic and multispectral images taken under similar as well as under very different conditions. On the other hand, if the true absolute resolution of one of the images of the pair is known, the resolution of the other can be computed. Thus, in the last part of this paper, a spatial calibrator that is designed and constructed to help compute the absolute resolution of a single remotely sensed image is described, and an example of its use is presented.