967 resultados para Igneous differentiation
Resumo:
To determine the immediate effect of thiazolidinediones on human skeletal muscle, differentiated human myotubes were acutely (1 day) and myoblasts chronically (during the differentiation process) treated with troglitazone (TGZ). Chronic TGZ treatment resulted in loss of the typical multinucleated phenotype. The increase of muscle markers typically observed during differentiation was suppressed, while adipocyte markers increased markedly. Chronic TGZ treatment increased insulin-stimulated phosphatidylinositol (PI) 3-kinase activity and membranous protein kinase B/Akt (PKB/Akt) Ser-473 phosphorylation more than 4-fold. Phosphorylation of p42/44 mitogen-activated protein kinase (42/44 MAPK/ERK) was unaltered. Basal glucose uptake as well as both basal and insulin-stimulated glycogen synthesis increased approximately 1.6- and approximately 2.5-fold after chronic TGZ treatment, respectively. A 2-fold stimulation of PI 3-kinase but no other significant TGZ effect was found after acute TGZ treatment. In conclusion, chronic TGZ treatment inhibited myogenic differentiation of that human muscle while inducing adipocyte-specific gene expression. The effects of chronic TGZ treatment on basal glucose transport may in part be secondary to this transdifferentiation. The enhancing effect on PI 3-kinase and PKB/Akt involved in both differentiation and glycogen synthesis appears to be pivotal in the cellular action of TGZ.
Resumo:
It is surprising to learn that so large a variety of igneous rocks is present in the Jardine and Crevasse Mountain mining districts, a region that is generally thought of as consisting principally of schists.
Resumo:
Intestinal macrophages, preferentially located in the subepithelial lamina propria, represent the largest pool of tissue macrophages in humans. As an adaptation to the local antigen- and bacteria-rich environment, intestinal macrophages exhibit several distinct phenotypic and functional characteristics. Notably, microbe-associated molecular pattern receptors, including the lipopolysaccharide (LPS) receptors CD14 and TLR4, and also the Fc receptors for IgA and IgG are absent on most intestinal macrophages under homeostatic conditions. Moreover, while macrophages in the intestinal mucosa are refractory to the induction of proinflammatory cytokine secretion, they still display potent phagocytic activity. These adaptations allow intestinal macrophages to comply with their main task, i.e., the efficient removal of microbes while maintaining local tissue homeostasis. In this paper, we review recent findings on the functional differentiation of monocyte subsets into distinct macrophage populations and on the phenotypic and functional adaptations that have evolved in intestinal macrophages in response to their antigen-rich environment. Furthermore, the involvement of intestinal macrophages in the pathogenesis of celiac disease and inflammatory bowel diseases is discussed.
Resumo:
Aims The effect Of anthropogenic landscape fragmentation on the genetic diversity and adaptive potential of plant populations is a major issue in conservation biology. However, little is known about the partitioning of genetic diversity in alpine species, which occur in naturally fragmented habitats. Here, we, investigate molecular patterns of three alpine plants (Epilobium fleischeri, Geum reptans and Campanula thyrsoides) across Switzerland and ask whether Spatial isolation has led to high levels of populations differentiation, increasing over distance, and a decrease of within-population variability. We further hypothesize that file contrasting potential for long-distance dispersal (LDD) of Seed in these Species will considerably influence and explain diversity partitioning. Methods For each study species, we Sampled 20-23 individuals from each of 20-32 populations across entire Switzerland. We applied Random Amplified Polymorphic Dimorphism markers to assess genetic diversity within (Nei's expected heterozygosity, H-e; percentage of polymorphic hands, P-P) and among (analysis of molecular variance, Phi(st)) populations and correlated population size and altitude with within-populalion diversity. Spatial patterns of genetic relatedness were investigated using Mantel tests and standardized major axis regression as well as unweighted pair group method with arithmetic mean cluster analyses and Monmonier's algorithm. To avoid known biases, We standardized the numbers of populations, individuals and markers using multiple random reductions. We modelled LDD with a high alpine wind data set using the terminal velocity and height of seed release as key parameters. Additionally, we assessed a number of important life-history traits and factors that potentially influence genetic diversity partitioning (e.g. breeding system, longevity and population size). Important findings For all three species, We found a significant isolation-by-distance relationship but only a moderately high differentiation among populations (Phi(st): 22.7, 48 and 16.8%, for E. fleischeri, G. reptans and C. thyrsoides, respectively). Within-population diversity (H-c: 0.19-0.21, P-p: 62-75%) was not reduced in comparison to known results from lowland species and even small populations with < 50 reproductive individuals contained high levels of genetic diversity. We further found no indication that a high long-distance seed dispersal potential enhances genetic connectivity among populations. Gene flow seems to have a strong stochastic component causing large dissimilarity between population pairs irrespective of the spatial distance. Our results suggest that other life-history traits, especially the breeding System, may play an important role in genetic diversity partitioning. We conclude that spatial isolation in the alpine environment has a strong influence on population relatedness but that a number of factors can considerably influence the strength of this relationship.
Resumo:
The maintenance of separated diploid and polyploid populations within a contact zone is possible due to both prezygotic and postzygotic isolation mechanisms. Niche differentiation between two cytotypes may be an important prezygotic isolating mechanism and can be studied using reciprocal transplant experiments. We investigated niche differentiation between diploid and hexaploid Aster amellus in their contact zone in the Czech Republic. Diploid populations are confined to habitats with low productivity, whereas hexaploid populations occur in habitats with both low and high productivity. Thus, we chose three diploid populations and six hexaploid populations, three in each of the two different habitat types. We analyzed habitat characteristics and carried out reciprocal transplant experiments in the field using both seeds and adult plants. Sites of diploid and hexaploid populations differed significantly in vegetation and soil properties. The mean number of juveniles was higher at sites of home ploidy level than at sites of foreign ploidy level, suggesting niche differentiation between the two cytotypes. On the other hand, transplanted adult plants survived at all sites and juvenile plants were able to establish at some sites of the foreign cytotype. Furthermore, the mean number of juveniles, survival, and flowering percentages were higher at home sites than at foreign sites, indicating local adaptation. We conclude that niche differentiation between the two cytotypes and local adaptation within each cytotype may contribute to the maintenance of diploid and hexaploid populations of A. amellus in their contact zone. Moreover, further factors, such as differences in flowering phenology and exclusion of minority cytotypes, should also be considered.
Resumo:
Tumor suppressor genes, such as p53, RB, the INK4-ARF family and PML, suppress malignant transformation by regulating cell cycle progression, ensuring the fidelity of DNA replication and chromosomal segregation, or by inducing apoptosis in response to potentially deleterious events. In myeloid leukemia, hematopoietic differentiation resulting from highly coordinated, stage-wise expression of myeloid transcription and soluble signaling factors is disrupted leading to a block in terminal differentiation and uncontrolled proliferation. This virtually always involves functional inactivation or genetic disruption of one or several tumor suppressor genes in order to circumvent their checkpoint control and apoptosis-inducing functions. Hence, reactivation of tumor suppressor gene function has therapeutic potential and can possibly enhance conventional cytotoxic chemotherapy. In this review, we focus on the role of different tumor suppressor genes in myeloid differentiation and leukemogenesis, and discuss implications for therapy.
Resumo:
There is a lot of excitement about the potential use of multipotent neural stem cells for the treatment of neurodegenerative diseases. However, the strategy is compromised by the general loss of multipotency and ability to generate neurons after long-term in vitro propagation. In the present study, human embryonic (5 weeks post-conception) ventral mesencephalic (VM) precursor cells were propagated as neural tissue-spheres (NTS) in epidermal growth factor (EGF; 20 ng/ml) and fibroblast growth factor 2 (FGF2; 20 ng/ml). After more than 325 days, the NTS were transferred to media containing either EGF+FGF2, EGF+FGF2+heparin or leukemia inhibitory factor (LIF; 10 ng/ml)+FGF2+heparin. Cultures were subsequently propagated for more than 180 days with NTS analyzed at various time-points. Our data show for the first time that human VM neural precursor cells can be long-term propagated as NTS in the presence of EGF and FGF2. A positive effect of heparin was found only after 150 days of treatment. After switching into different media, only NTS exposed to LIF contained numerous cells positive for markers of newly formed neurons. Besides of demonstrating the ability of human VM NTS to be long-term propagated, our study also suggests that LIF favours neurogenic differentiation of human VM precursor cells.
Resumo:
The radiological determination of foreign objects in corpses can be difficult if they are fragmented or deformed. With multislice computed tomography, radiodensities--referred to as Hounsfield units (HU)--can be measured. We examined the possibility of differentiating 21 frequently occurring foreign bodies, such as metals, rocks, and different manmade materials by virtue of their HU values. Gold, steel, and brass showed mean HU values of 30671-30710 (upper measurable limit), mean HU values for steel, silver, copper, and limestone were 20346, 16949, 14033, and 2765, respectively. The group consisting of objects, such as aluminum, tarmac, car front-window glass, and other rocks, displayed mean HU values of 2329-2131 HU. The mean HU value of bottle glass and car side-window glass was 2088, whereas windowpane glass was 493. HU value determination may therefore help in preautopsy differentiation between case-relevant and irrelevant foreign bodies and thus be useful for autopsy planning and extraction of the objects in question.