970 resultados para ISOTHERMAL TITRATION CALORIMETRY
Resumo:
The aim of the present study was to compare, under the same nursing conditions, the energy-nitrogen balance and the protein turnover in small for gestational age (SGA) and appropriate for gestational age (AGA) low birthweight infants. We compared 8 SGA's (mean +/- s.d.: gestational age 35 +/- 2 weeks, birthweight 1520 +/- 330 g) to 11 AGA premature infants (32 +/- 2 weeks, birthweight 1560 +/- 240 g). When their rate of weight gain was above 15 g/kg/d (17.6 +/- 3.0 and 18.2 +/- 2.6 g/kg/d, mean postnatal age 18 +/- 10 and 20 +/- 9 d respectively) they were studied with respect to their metabolizable energy intake, their energy expenditure, their energy and protein gain and their protein turnover. Energy balance was assessed by the difference between metabolizable energy and energy expenditure as measured by indirect calorimetry. Protein gain was calculated from the amount of retained nitrogen. Protein turnover was estimated by a stable isotope enrichment technique using repeated nasogastric administration of 15N-glycine for 72 h. Although there was no difference in their metabolizable energy intakes (110 +/- 12 versus 108 +/- 11 kcal/kg/d), SGA's had a higher rate of resting energy expenditure (64 +/- 8 versus 57 +/- 8 kcal/kg/d, P less than 0.05). Protein gain and composition of weight gain was very similar in both groups (2.0 +/- 0.4 versus 2.1 +/- 0.4 g protein/kg/d; 3.5 +/- 1.1 versus 3.3 +/- 1.4 g fat/kg/d in SGA's and AGA's respectively). However, the rate of protein synthesis was significantly lower in SGA's (7.7 +/- 1.6 g/kg/d) as compared to AGA's (9.7 +/- 2.8 g/kg/d; P less than 0.05). It is concluded that SGA's have a more efficient protein gain/protein synthesis ratio since for the same weight and protein gains, SGA's show a 20 per cent slower protein turnover. They might therefore tolerate slightly higher protein intakes. Postconceptional age seems to be an important factor in the regulation of protein turnover.
Resumo:
Food intake increases to a varying extent during pregnancy to provide extra energy for the growing fetus. Measuring the respiratory quotient (RQ) during the course of pregnancy (by quantifying O2 consumption and CO2 production with indirect calorimetry) could be potentially useful since it gives an insight into the evolution of the proportion of carbohydrate vs. fat oxidized during pregnancy and thus allows recommendations on macronutrients for achieving a balanced (or slightly positive) substrate intake. A systematic search of the literature for papers reporting RQ changes during normal pregnancy identified 10 papers reporting original research. The existing evidence supports an increased RQ of varying magnitude in the third trimester of pregnancy, while the discrepant results reported for the first and second trimesters (i.e. no increase in RQ), explained by limited statistical power (small sample size) or fragmentary data, preclude safe conclusions about the evolution of RQ during early pregnancy. From a clinical point of view, measuring RQ during pregnancy requires not only sophisticated and costly indirect calorimeters but appears of limited value outside pure research projects, because of several confounding variables: (1) spontaneous changes in food intake and food composition during the course of pregnancy (which influence RQ); (2) inter-individual differences in weight gain and composition of tissue growth; (3) technical factors, notwithstanding the relatively small contribution of fetal metabolism per se (RQ close to 1.0) to overall metabolism of the pregnant mother.
Resumo:
Sirt3 is a mitochondrial NAD(+)-dependent deacetylase that governs mitochondrial metabolism and reactive oxygen species homeostasis. Sirt3 deficiency has been reported to accelerate the development of the metabolic syndrome. However, the role of Sirt3 in atherosclerosis remains enigmatic. We aimed to investigate whether Sirt3 deficiency affects atherosclerosis, plaque vulnerability, and metabolic homeostasis. Low-density lipoprotein receptor knockout (LDLR(-/-)) and LDLR/Sirt3 double-knockout (Sirt3(-/-)LDLR(-/-)) mice were fed a high-cholesterol diet (1.25 % w/w) for 12 weeks. Atherosclerosis was assessed en face in thoraco-abdominal aortae and in cross sections of aortic roots. Sirt3 deletion led to hepatic mitochondrial protein hyperacetylation. Unexpectedly, though plasma malondialdehyde levels were elevated in Sirt3-deficient mice, Sirt3 deletion affected neither plaque burden nor features of plaque vulnerability (i.e., fibrous cap thickness and necrotic core diameter). Likewise, plaque macrophage and T cell infiltration as well as endothelial activation remained unaltered. Electron microscopy of aortic walls revealed no difference in mitochondrial microarchitecture between both groups. Interestingly, loss of Sirt3 was associated with accelerated weight gain and an impaired capacity to cope with rapid changes in nutrient supply as assessed by indirect calorimetry. Serum lipid levels and glucose tolerance were unaffected by Sirt3 deletion in LDLR(-/-) mice. Sirt3 deficiency does not affect atherosclerosis in LDLR(-/-) mice. However, Sirt3 controls systemic levels of oxidative stress, limits expedited weight gain, and allows rapid metabolic adaptation. Thus, Sirt3 may contribute to postponing cardiovascular risk factor development.
Resumo:
OBJECTIVE: Fish oil (FO) may attenuate the inflammatory response after major surgery such as abdominal aortic aneurysm (AAA) surgery. We aimed at evaluating the clinical impact and safety aspects of a FO containing parenteral nutrition (PN) after AAA surgery. METHODS: Intervention consisted in 4 days of either standard (STD: Lipofundin medium-chain triglyceride (MCT): long-chain triglyceride (LCT)50%-MCT50%) or FO containing PN (FO: Lipoplus: LCT40%-MCT50%-FO10%). Energy target were set at 1.3 times the preoperative resting energy expenditure by indirect calorimetry. Blood sampling on days 0, 2, 3 and 4. Glucose turnover by the (2)H(2)-glucose method. Muscle microdialysis. Clinical data: maximal daily T degrees, intensive care unit (ICU) and hospital stay. RESULTS: Both solutions were clinically well tolerated, without any differences in laboratory safety parameters, inflammatory, metabolic data, or in organ failures. Plasma tocopherol increased similarly; with FO, docosahexaenoic and eicosapentaenoic acid increased significantly by day 4 versus baseline or STD. To increased postoperatively, with a trend to lower values in FO group (P=0.09). After FO, a trend toward shorter ICU stay (1.6+/-0.4 versus 2.3+/-0.4), and hospital stay (9.9+/-2.4 versus 11.3+/-2.7 days: P=0.19) was observed. CONCLUSIONS: Both lipid emulsions were well tolerated. FO-PN enhanced the plasma n-3 polyunsaturated fatty acid content, and was associated with trends to lower body temperature and shorter length of stay.
Resumo:
OBJECTIVE: To assess total free-living energy expenditure (EE) in Gambian farmers with two independent methods, and to determine the most realistic free-living EE and physical activity in order to establish energy requirements for rural populations in developing countries. DESIGN: In this cross-sectional study two methods were applied at the same time. SETTING: Three rural villages and Dunn Nutrition Centre Keneba, MRC, The Gambia. SUBJECTS: Eight healthy, male subjects were recruited from three rural Gambian villages in the sub-Sahelian area (age: 25 +/- 4y; weight: 61.2 +/- 10.1 kg; height: 169.5 +/- 6.5 cm, body mass index: 21.2 +/- 2.5 kg/m2). INTERVENTION: We assessed free-living EE with two inconspicuous and independent methods: the first one used doubly labeled water (DLW) (2H2 18O) over a period of 12 days, whereas the second one was based on continuous heart rate (HR) measurements on two to three days using individual regression lines (HR vs EE) established by indirect calorimetry in a respiration chamber. Isotopic dilution of deuterium (2H2O) was also used to assess total body water and hence fat-free mass (FFM). RESULTS: EE assessed by DLW was found to be 3880 +/- 994 kcal/day (16.2 +/- 4.2 MJ/day). Expressed per unit body weight the EE averaged 64.2 +/- 9.3 kcal/kg/d (269 +/- 38 kJ/kg/d). These results were consistent with the EE results assessed by HR: 3847 +/- 605 kcal/d (16.1 +/- 2.5 MJ/d) or 63.4 +/- 8.2 kcal/kg/d (265 +/- 34kJ/kg/d). Physical activity index, expressed as a multiple of basal metabolic rate (BMR), averaged 2.40 +/- 0.41 (DLW) or 2.40 +/- 0.28 (HR). CONCLUSIONS: These findings suggest an extremely high level of physical activity in Gambian men during intense agricultural work (wet season). This contrasts with the relative food shortage, previously reported during the harvesting period. We conclude that the assessment of EE during the agricultural season in non-industrialized countries needs further investigations in order to obtain information on the energy requirement of these populations. For this purpose the use of the DLW and HR methods have been shown to be useful and complementary.
Resumo:
We measured body composition and energy expenditure during walking and running on a treadmill in 40 prepubertal children: 23 obese children (9.3 +/- 1.1 years of age; 46 +/- 10 kg (mean +/- SD)) and 17 nonobese matched control children (9.2 +/- 0.6 years of age; 30 +/- 5 kg). Energy expenditure was assessed by indirect calorimetry with a standard open-circuit method. At the same speed of exercise, the energy expenditure was significantly (p < 0.01) greater in obese than in control children, in both boys and girls. Expressed per kilogram of body weight or per kilogram of fat-free mass, the energy expenditure was comparable in the two groups. Obese children had a significantly (p < 0.01) larger pulmonary ventilatory response to exercise than did control children. Heart rate was comparable in boys and girls combined but significantly higher (p < 0.05) in obese subjects, if boys and girls were analyzed separately. These data indicate that walking and running are energetically more expensive for obese children than for children of normal body weight. The knowledge of these energy costs could be useful in devising a physical activity program to be used in the treatment of obese children.
Resumo:
BACKGROUND: Ergonomic unstable shoes, which are widely available to the general population, could increase daily non-exercise activity thermogenesis as the result of increased muscular involvement. We compared the energy expenditure of obese patients during standing and walking with conventional flat-bottomed shoes versus unstable shoes. METHODS: Twenty-nine obese patients were asked to stand quietly and to walk at their preferred walking speed while wearing unstable or conventional shoes. The main outcome measures were metabolic rate of standing and gross and net energy cost of walking, as assessed with indirect calorimetry. RESULTS: Metabolic rate of standing was higher while wearing unstable shoes compared with conventional shoes (1.11 ± 0.20 W/kg(-1) vs 1.06 ± 0.23 W/kg(-1), P=.0098). Gross and net energy cost of walking were higher while wearing unstable shoes compared with conventional shoes (gross: 4.20 ± 0.42 J/kg(-1)/m(-1)vs 4.01 ± 0.39 J/kg(-1)/m(-1), P=.0035; net: 3.37 ± 0.41 J/kg(-1)/m(-1) vs 3.21 ± 0.37 J/kg(-1)/m(-1); P=.032). CONCLUSION: In obese patients, it is possible to increase energy expenditure of standing and walking by means of ergonomic unstable footwear. Long-term use of unstable shoes may eventually prevent a positive energy balance.
Resumo:
En l’àmbit de la indústria metal·lúrgica és molt freqüent l’ús de tècniques de conformació per deformació (treball en fred o en calent) per tal de donar forma, a metalls o aliatges metàl·lics. Mecànicament, el treball en fred provoca l’increment de la duresa i de la resistència a la tensió i, per contra, la reducció de la ductilitat, de la conductivitat elèctrica i de la resistència a la corrosió. Per tal de millorar les propietats mecàniques afectades per la reducció és on pren rellevància l’ús de la recuita. La recuita és un tractament tèrmic format per tres etapes: la recuperació, la recristal·lització i el creixement del gra. En el present projecte analitzem en detall la recuperació. El projecte té com a objectiu fer l’estudi experimental de la cinètica, durant la recuita de recuperació, d’un aliatge mecànic. Aquest estudi permetrà determinar els paràmetres més rellevants per tal de descriure com evolucionen l’estructura i les propietats del metall durant un tractament tèrmic, en funció del temps de tractament i la temperatura
Resumo:
Methadone is widely used for the treatment of opioid dependence. Although in most countries the drug is administered as a racemic mixture of (R)- and (S)- methadone, (R)-methadone accounts for most, if not all, of the opioid effects. Methadone can be detected in the blood 15-45 minutes after oral administration, with peak plasma concentration at 2.5-4 hours. Methadone has a mean bioavailability of around 75% (range 36-100%). Methadone is highly bound to plasma proteins, in particular to alpha(1)-acid glycoprotein. Its mean free fraction is around 13%, with a 4-fold interindividual variation. Its volume of distribution is about 4 L/kg (range 2-13 L/kg). The elimination of methadone is mediated by biotransformation, followed by renal and faecal excretion. Total body clearance is about 0.095 L/min, with wide interindividual variation (range 0.02-2 L/min). Plasma concentrations of methadone decrease in a biexponential manner, with a mean value of around 22 hours (range 5-130 hours) for elimination half-life. For the active (R)-enantiomer, mean values of around 40 hours have been determined. Cytochrome P450 (CYP) 3A4 and to a lesser extent 2D6 are probably the main isoforms involved in methadone metabolism. Rifampicin (rifampin), phenobarbital, phenytoin, carbamazepine, nevirapine, and efavirenz decrease methadone blood concentrations, probably by induction of CYP3A4 activity, which can result in severe withdrawal symptoms. Inhibitors of CYP3A4, such as fluconazole, and of CYP2D6, such as paroxetine, increase methadone blood concentrations. There is an up to 17-fold interindividual variation of methadone blood concentration for a given dosage, and interindividual variability of CYP enzymes accounts for a large part of this variation. Since methadone probably also displays large interindividual variability in its pharmacodynamics, methadone treatment must be individually adapted to each patient. Because of the high morbidity and mortality associated with opioid dependence, it is of major importance that methadone is used at an effective dosage in maintenance treatment: at least 60 mg/day, but typically 80-100 mg/day. Recent studies also show that a subset of patients might benefit from methadone dosages larger than 100 mg/day, many of them because of high clearance. In clinical management, medical evaluation of objective signs and subjective symptoms is sufficient for dosage titration in most patients. However, therapeutic drug monitoring can be useful in particular situations. In the case of non-response trough plasma concentrations of 400 microg/L for (R,S)-methadone or 250 microg/L for (R)-methadone might be used as target values.
Resumo:
Severe head injury induces major hormonal, humoral and metabolic changes, characterized by increases in stress hormone secretion, lymphokines production, associated with high lipid and protein catabolism as well as changes in energy expenditure (EE). Numerous factors influence EE in head-injured patients, particularly anthropometric data, body temperature, nutritional support, level of consciousness, muscular tone and activity. Resting EE is usually increased following brain trauma; however, normal or decreased metabolic rates can be observed in curarized patients on mechanical ventilation or in patients receiving high doses of barbiturates.
Resumo:
Two of the drawbacks of using natural-based composites in industrial applications are thermal instability and water uptake capacity. In this work, mechanical wood pulp was used to reinforce polypropylene at a level of 20 to 50 wt. %. Composites were mixed by means of a Brabender internal mixer for both non-coupled and coupled formulations. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to determine the thermal properties of the composites. The water uptake behavior was evaluated by immersion of the composites in water until an equilibrium state was reached. Results of water absorption tests revealed that the amount of water absorption was clearly dependent upon the fiber content. The coupled composites showed lower water absorption compared to the uncoupled composites. The incorporation of mechanical wood pulp into the polypropylene matrix produced a clear nucleating effect by increasing the crystallinity degree of the polymer and also increasing the temperature of polymer degradation. The maximum degradation temperature for stone ground wood pulp–reinforced composites was in the range of 330 to 345 ºC
Resumo:
In this study, glyoxalated alkaline lignins with a non-volatile and non-toxic aldehyde, which can be obtained from several natural resources, namely glyoxal, were prepared and characterized for its use in wood adhesives. The preparation method consisted of the reaction of lignin with glyoxal under an alkaline medium. The influence of reaction conditions such as the molar ratio of sodium hydroxide-to-lignin and reaction time were studied relative to the properties of the prepared adducts. The analytical techniques used were FTIR and 1H-NMR spectroscopies, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Results from both the FTIR and 1H-NMR spectroscopies showed that the amount of introduced aliphatic hydroxyl groups onto the lignin molecule increased with increasing reaction time and reached a maximum value at 10 h, and after they began to decrease. The molecular weights remained unchanged until 10 h of reaction time, and then started to increase, possibly due to the repolymerization reactions. DSC analysis showed that the glass transition temperature (Tg) decreased with the introduction of glyoxal onto the lignin molecule due to the increase in free volume of the lignin molecules. TGA analysis showed that the thermal stability of glyoxalated lignin is not influenced and remained suitable for wood adhesives. Compared to the original lignin, the improved lignin is reactive and a suitable raw material for adhesive formula
Resumo:
Besides polyurethanes and polyesters, phenolic and epoxy resins are the most prominent applications for technical lignins in thermosetting materials. To evaluate the potential application of lignin raw materials in phenol formaldehyde and epoxy resins, three types of alkaline lignins were characterized in terms of their structures and thermal properties. The lignin samples analyzed were kraft lignin (LIG-1), soda–rice straw lignin (LIG-2), and soda-wheat straw lignin (LIG-3). FTIR and 1H-NMR methods were used to determine their structure. Gel permeation chromatography (GPC) was used to determine the molecular weight distribution (MWD). Differential scanning calorimetry (DSC) was used to measure the glass transition temperature (Tg), and thermogravimetric analysis (TGA) to determine the thermal stability of lignin samples. Results showed that kraft lignin (LIG-1) has moderate hydroxyl-group content, is rich in G-type units, and has good thermal stability. These properties make it more suitable for direct use in phenol formaldehyde resins, and it is therefore a good raw material for this purpose. The alkaline soda-rice straw lignin (LIG-2) with a high hydroxyl-group content and excellent thermal stability is most suited to preparing lignin-based epoxy resin
Resumo:
The effect of diet composition [high-carbohydrate, low-fat (HC) and high-fat, low-carbohydrate (HF) diets] on macronutrient intakes and nutrient balances was investigated in young men of normal body weight. Eleven subjects were studied on two occasions for 48 h in a whole-body indirect calorimeter in a crossover design. Subjects selected their meals from a list containing a large variety of common food, which had a food quotient > 0.85 for the HC diet and < 0.85 for the HF diet. The average ad libitum intake was 14.41 +/- 0.85 MJ/d (67%, 18%, and 15% of energy as carbohydrate, fat, and protein, respectively) with the HC diet and 18.25 +/- 0.90 MJ/d (26%, 61%, and 13% of energy as carbohydrate, fat, and protein, respectively) with the HF diet. Total energy expenditure was not significantly influenced by diet composition: 10.46 +/- 0.27 and 10.97 +/- 0.22 MJ/d for the HC and HF diets, respectively. During the 2 test days, cumulative carbohydrate storage was 418 +/- 72 and 205 +/- 47 g, and fat balance was 29 +/- 17 and 291 +/- 29 g with the HC and HF diets, respectively. Only the HF diet induced a significantly positive fat balance. These results emphasize the important role of the dietary fat content in body fat storage.
Resumo:
The biological and therapeutic responses to hyperthermia, when it is envisaged as an anti-tumor treatment modality, are complex and variable. Heat delivery plays a critical role and is counteracted by more or less efficient body cooling, which is largely mediated by blood flow. In the case of magnetically mediated modality, the delivery of the magnetic particles, most often superparamagnetic iron oxide nanoparticles (SPIONs), is also critically involved. We focus here on the magnetic characterization of two injectable formulations able to gel in situ and entrap silica microparticles embedding SPIONs. These formulations have previously shown suitable syringeability and intratumoral distribution in vivo. The first formulation is based on alginate, and the second on a poly(ethylene-co-vinyl alcohol) (EVAL). Here we investigated the magnetic properties and heating capacities in an alternating magnetic field (141 kHz, 12 mT) for implants with increasing concentrations of magnetic microparticles. We found that the magnetic properties of the magnetic microparticles were preserved using the formulation and in the wet implant at 37 degrees C, as in vivo. Using two orthogonal methods, a common SLP (20 Wg(-1)) was found after weighting by magnetic microparticle fraction, suggesting that both formulations are able to properly carry the magnetic microparticles in situ while preserving their magnetic properties and heating capacities. (C) 2010 Elsevier B.V. All rights reserved.