980 resultados para ISEC, Polymerbeschichtungen, HPLC, Biopolymere, Biokompatibilitätstest, stationäre Phasen
Resumo:
A stability-indicating high-performance liquid chromatographic (HPLC) and a second-order derivative spectrophotometric (UVDS) analytical methods were validated and compared for determination of simvastatin in tablets. The HPLC method was performed with isocratic elution using a C18 column and a mobile phase composed of methanol:acetonitrile:water (60:20:20, v/v/v) at a flow rate of 1.0 ml/min. The detection was made at 239 nm. In UVDS method, methanol and water were used in first dilution and distilled water was used in consecutive dilutions and as background. The second-order derivative signal measurement was taken at 255 nm. Analytical curves showed correlation coefficients > 0.999 for both methods. The quantitation limits (QL) were 2.41 mu g/ml for HPLC and 0.45 mu g/ml for UVDS, respectively. Intra and inter-day relative standard deviations were < 2.0 %. Statistical analysis with t- and F-tests are not exceeding their critical values demonstrating that there is no significant difference between the two methods at 95 % confidence level.
Resumo:
Two different cefadroxil (CAS 50370-12-2) formulations were evaluated for their relative bioavailability in 24 healthy volunteers who received a single 500 mg oral dose of each preparation. An open, randomized clinical trial designed as a two-period crossover study with a 7-day washout period between doses was employed. Plasma samples for assessments of their cefadroxil concentration by HPLC-UV were obtained over 8 h after administration. Values of 48.94 +/- 10.18 mu g . h/ml for test, and 48.51 +/- 9.02 mu g . h/ml for the reference preparation AUC(0-t) demonstrate a nearly identical extend of drug absorption. Maximum plasma concentration C-max of 16.04 +/- 4.94 mu g/ml and 16.01 +/- 4.02 mu g/ml achieved for the test and reference preparations did not differ significantly. The parametric 90% confidence intervals (CI) of the mean of the difference (test-reference) between log-transformed values of the two formulations were 96.80% to 104.51% and 92.01% to 107.00% for AUC(0-t) and C-max, respectively. Since for both AUC(0-t) or C-max the 90% CI values are within the interval proposed by the Food and Drug Administration, the test product is bioequivalent to the reference product for both the rate and extent of absorption after single dose administration.
Resumo:
High performance liquid chromatographic (HPLC) and UV derivative spectrophotometric (UVDS) methods were developed and validated for the quantitative determination of sotalol hydrochloride in tablets. The HPLC method was performed on a C18 column with fluorescence detection. The excitation and emission wavelengths were 235 and 310nm, respectively. The mobile phase was composed of acetonitrile-water containing 0.1% trietylamine (7:93v/v) and pH adjusted to 4.6 with formic acid. The UVDS method was performed taking a signal at 239.1nm in the first derivative. The correlation coefficients (r) obtained were 0.9998 and 0.9997 for HPLC and UVDS methods, respectively. The proposed methods are simple and adaptable to routine analysis.
Resumo:
The purpose of this study was to develop and validate analytical methods for determination of amlodipine besylate in tablets. Simple, accurate and precise liquid chromatographic and spectrophotometric methods are proposed. For the chromatographic method, the conditions were: a LiChrospher (R) 100 RP-18 Merck (R) (125 mm x 4.6 mm, 5 mu m) column; methanol/water containing 1 % of trietylamine adjusted to pH 5.0 with phosphoric acid (35:65) as mobile phase; a flow rate of 1.0 mL/min and UV detector at 238 nm. Linearity was in the range of 50.0 - 350.0 mu g/mL with a correlation coefficient (r) = 0.9999. For the spectrophotometric method, the first dilutions of samples were performed in methanol and the consecutives in ultrapure water. The quantitation was made at 364.4 nm. Linearity was determined within the range of 41.0 - 61.0 mu g/mL with a correlation coefficient (r) = 0.9996. Our results demonstrate that both methods can be used in routine analysis for quality control of tablets containing amlodipine besylate.
Resumo:
An enantioselective method using liquid-phase microextraction (LPME) followed by HPLC analysis was developed for the determination of oxybutynin (OXY) and its major metabolite N-desethyloxybutynin (DEO) in rat liver microsomal fraction. The LPME procedure was optimized using multifactorial experiments. Under the optimal extraction conditions, the mean recoveries were 61 and 55% for (R)-OXY and (S)-OXY, respectively. and 70 and 76% for (R)-DEO and (S)-DEO, respectively. The validated method was employed to an in vitro biotransformation study using rat liver microsomal fraction. The results demonstrated the enantioselective biotransformation of OXY. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
A simple and rapid method, which involves liquid-phase microextraction (LPME) followed by HPLC analysis using Chiralpak AD column and UV detection, was developed for the enantioselective determination of mefloquine in plasma samples. Several factors that influence the efficiency of three-phase LPME were investigated and optimized. Under the optimal extraction conditions, the mean recoveries were 33.2 and 35.0% for (-)-(SR-)-mefloquine and (+)-(RS)-mefloquine, respectively. The method was linear over 50-1500 ng/ml range. Within-day and between-day assay precision and accuracy were below 15% for both enantiomers at concentrations of 150, 600 and 1200 ng/ml. Furthermore, no racemization or degradation were seen with the method described. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Thioridazine (THD) is a commonly prescribed phenotiazine neuroleptic drug, which is extensively biotransformed in the organism producing as main metabolites sulfoxides and a sulfone by sulfur oxidation Significant differences have been observed in the activity of the THD enantiomers as well as for its main metabolites, and enantioselectivity phenomena have been proved in the metabolic pathway. Here the assignment of the absolute configuration at the sulfur atom of enantiomeric THD-2-sulfoxide (THD-2-SO) has been carried out by circular dichroism (CD) spectroscopy The stereoisomers were separated by HPLC on Chiralpak AS column, recording the CD spectra for the two collected enantiomeric fractions The theoretical electronic CD spectrum has been obtained by the TDDFT/B3LYP/6-31G*. as Boltzmann averaging of the contributions calculated for the most stable conformations of the drug The comparison of the simulated and experimental spectra allowed the absolute configuration at the sulfur atom of the four THD-2-SO stereoisomers to be assigned The developed method should be useful for a reliable correlation between stereochemistry and activity and/or toxicity
Resumo:
A three-phase hollow-fiber liquid-phase microextraction method for the analysis of rosiglitazone and its metabolites N-desmethyl rosiglitazone and p-hydroxy rosiglitazone in microsomal preparations is described for the first time. The drug and metabolites HPLC determination was carried out using an X-Terra RP-18 column, at 22 degrees C. The mobile phase was composed of water, acetonitrile and acetic acid (85:15:0.5, v/v/v) and the detection was performed at 245 nm. The hollow-fiber liquid-phase microextraction procedure was optimized using multifactorial experiments and the following optimal condition was established: sample agitation at 1750 rpm, extraction for 30 min, hydrochloric acid 0.01 mol/L as acceptor phase, 1-octanol as organic phase, and donor phase pH adjustment to 8.0. The recovery rates, obtained by using 1 mL of microsomal preparation, were 47-70%. The method presented LOQs of 50 ng/mL and it was linear over the concentration range of 50-6000 ng/mL, with correlation coefficients (r) higher than 0.9960, for all analytes. The validated method was employed to study the in vitro biotransformation of rosiglitazone using rat liver microsomal fraction.
Resumo:
A selective and reproducible off-line solid-phase microextraction procedure was developed for the simultaneous enantioselective determination of mirtazapine (MRT), demethylmirtazapine and 8-hydroxymirtazapine in human urine. CE was used for optimization of the extraction procedure whereas LC-MS was used for method validation and application. The influence of important factors in the solid-phase microextraction efficiency is discussed, such as the fiber coatings, extraction time, pH, ionic strength, temperature and desorption time. Before extraction, human urine samples were submitted to enzymatic hydrolysis at 37 degrees C for 16 h. Then, the enzyme was precipitated with trichloroacetic acid and the pH was adjusted to 8 with 1 mol/L pH 11 phosphate buffer solution. In the extraction, the analytes were transferred from the aqueous solution to the polydimethylsiloxane-divinylbenzene fiber coating and then desorbed in methanol. The mean recoveries were 5.4, 1.7 and 1.0% for MRT, demethylmirtazapine and 8-hydroxymirtazapine enantiomers, respectively. The method was linear over the concentration range of 62-1250 ng/mL. The within-day and between-day assay precision and accuracy were lower than 15%. The method was successfully employed in a preliminary cumulative urinary excretion study after administration of racemic MRT to a healthy volunteer.
Resumo:
A new nitrosyl ruthenium complex [Ru(NH center dot NHq)(terpy)NO](3+) nitric oxide donor was recently developed and due to its excellent vasodilator activity, it has been considered as a potential drug candidate. Drug metabolism is one of the main parameters that should be evaluated in the early drug development, so the biotransformation of this complex by rat hepatic microsomes was investigated. In order to perform the biotransformation study, a simple, sensitive and selective HPLC method was developed and carefully validated. The parameters evaluated in the validation procedure were: linearity, recovery, precision, accuracy, selectivity and stability. Except for the stability study, all the parameters evaluated presented values below the recommended by FDA guidelines. The stability study showed a time-dependent degradation profile. After method validation, the biotransformation study was accomplished and the kinetic parameters were determined. The biotransformation study obeyed the Michaelis-Menten kinetics. The V(max) and K(m) were, respectively, 0.1625 +/- 0.010 mu mol/mg protein/min and 79.97 +/- 11.52 mu M. These results indicate that the nitrosyl complex is metabolized by CYP450. (C) 2009 Elsevier Inc. All rights reserved.
Brazilian Propolis: Seasonal Variation of the Prenylated p-Coumaric Acids and Antimicrobial Activity
Resumo:
Brazilian green propolis, which is used in food and beverages to improve health and to prevent diseases, demostrates antioxidant, antimutagenic, and antimicrobial activities. Most biological activities are thought to be related to the high levels of drupanin, artepillin C, and baccharin, which are compounds also present in Baccharis dracunculifolia D.C. (Asteraceae). Since propolis chemical composition depends on the region and the period of collection, as well as its plant origin, the effect of seasonal variation on the both content of prenylated p-coumaric acids and in vitro antimicrobial activity of Brazilian propolis from four different sites, was performed. The results showed that MIC values ranged from 100 to 300 mu g/mL against both Staphylococcus aureus and Kocuria rhizophila, while none of the propolis samples was active against Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. HPLC analysis showed that the content of drupanin, artepillin C, and baccharin varied throughout the year, as well as among the different study sites. Also, it is suggested that Baccharis dracunculifolia is the main botanical source of Brazilian propolis in sites I and 2, while in sites 3 and 4, other plant species are also used by bees to produce propolis. All the evaluated propolis samples exhibited similar antibacterial activity, but different contents of prenylated p-coumaric acids throughout the year.
Resumo:
The purpose of this study was to develop a lyotropic liquid crystalline formulation using the emulsifier vitamin E TPGS and evaluate its behavior after incorporation of a flavonoid, quercetin. The physical (macro and microscopic), chemical (determination of quercetin content by the HPLC method) and functional (determination of quercetin antioxidant activity by DPPH center dot assay) stability of the lamellar liquid crystalline formulation containing flavonoid was evaluated when stored at 4+/-2 degrees C; 30+/-2 degrees C/70+/-5% RH (relative humidity) and 40+/-2 degrees C/70+/-5% RH during 12 months. The lamellar liquid crystalline structure of the formulation was maintained during the experiment, however chemical and functional stability results showed a great influence of the storage period in all conditions tested. A significant decrease in quercetin content (approximately 40%) was detected during the first month of storage and a similar significant loss in antioxidant activity was detected after 6 months. The remaining flavonoid content was unchanged during the final 6 months of the experimental period. The results suggest possible interactions between quercetin and the liquid crystalline formulation, which could inhibit or reduce the quercetin activity incorporated in the system. In conclusion, the present study demonstrated that incorporation of quercetin (1%) did not affect the liquid crystalline structure composed of vitamin E TPGS/IPM/PG-H2O (1:1) at 63.75/21.25/15 (w/w/w). Nevertheless, of the total quercetin incorporated in the system only 60% was free to act as an antioxidant.
Resumo:
The trypanocidal activity of racemic mixtures of cis- and trans-methylpluviatolides was evaluated in vitro against trypomastigote forms of two strains of Trypanosoma cruzi, and in the enzymatic assay of T. cruzi gGAPDH. The cytotoxicity of the compounds was assessed by the MTT method using LLC-MK2 cells. The effect of the compounds on peroxide and NO production were also investigated. The mixture of the trans stereoisomers displayed trypanocidal activity (IC(50) similar to 89.3 mu M). Therefore, it was separated by chiral HPLC, furnishing the and (+) (-)-enantiomers. Only the (-)-enantiomer was active against the parasite (IC(50) similar to 18.7 mu M). Despite being inactive, the (+)-enantiomer acted as an antagonistic competitor. Trans-methylpluviatolide displayed low toxicity for LLC-MK(2) cells, with an IC(50) of 6.53 mM. Furthermore, methylpluviatolide neither inhibited gGAPDH activity nor hindered peroxide and NO production at the evaluated concentrations. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
(+/-)-Licarin A (1), a neolignan obtained by the oxidative coupling reaction of isoeugenol, had in this study its enantiomers resolved. A novel, quick and efficient enantiomeric resolution of 1 was directly performed by chiral high-performance liquid chromatography (HPLC-PDA) protocol (CHIRALPACK (R) AD column; 9:1 (v/v) n-hexane:2-propanol; 1.0 mL/min). This method provided a chromatogram profile with a well-resolved peak separation. After isolation of each enantiomer with ee >99.9%, they were analysed in a polarimeter. Compound 2, which showed a retention time (t(r)) of 12.13 min, was the (+)-enantiomer and compound 3 (t(r) =18.90 min) was the (-)-enantiomer. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Aim of the study: Yacon [Smallanthus sonchifolius (Poepp. 82 Endl.) H. Robinson, Asteraceae] is an Andean species that has traditionally been used as an anti-diabetic herb in several countries around the world, including Brazil. Its hypoglycaemic action has recently been demonstrated in normal and diabetic rats. However, studies about the safety of prolonged oral consumption of yacon leaf extracts are lacking. Thus, this work was undertaken to evaluate the repeated-dose toxicity of three extracts from yacon leaves: the aqueous extract (AE) prepared as a tea infusion; the leaf-rinse extract (LRE), which is rich in sesquiterpene lactones (STLs); and a polar extract from leaves without trichomes, or polar extract (PE), which lacks STLs but is rich in chlorogenic acids (CGAs). Materials and methods: The major classes of the compounds were confirmed in each extract by IR spectra and HPLC-UV-DAD profiling as well as comparison to standard compounds. The toxicity of each extract was evaluated in a repeated-dose toxicity study in Wistar rats for 90 days. Results: The PE was rich in CGAs, but we did not detect any STLs. The AE and LEE showed the presence of STLs. The polar extract caused alterations in some biochemical parameters, but the animals did not show signs of behavioural toxicity or serious lesions in organs. Alterations of specific biochemical parameters in the blood (creatinine 7.0 mg/dL, glucose 212.0 mg/dL, albumin 2.8 g/dL) of rats treated with AE (10,50 and 100 mg/kg) and LRE (10 and 100 mg/kg) pointed to renal damage, which was confirmed by histological analysis of the kidneys. Conclusions: The renal damage was associated with increased blood glucose levels after prolonged oral administration of the AE. This observation suggested that the hypoglycaemic effect observed after treatment for 30 days in an earlier study is reversible and was likely the result of renal injury caused by the toxicity of yacon. Because STLs were detected in both AE and LRE, there is strong evidence that these terpenoids are the main toxic compounds in the leaves of the yacon. Based on our results, we do not recommend the oral use of yacon leaves to treat diabetes. (C) 2010 Elsevier Ireland Ltd. All rights reserved.