919 resultados para INTRAVASCULAR ULTRASOUND
Resumo:
INTRODUCTION The aim of this study was to compare orthodromic sural nerve conduction study (NCS) results using ultrasound-guided needle positioning (USNP) to surface electrode recordings. METHODS 51 healthy subjects aged 24 - 80 years, divided into 5 age groups, were examined. Electrical stimuli were applied behind the lateral malleolus. Sensory nerve action potentials (SNAPs) were recorded 8 and 15 cm proximally with surface and needle electrodes. RESULTS Mean SNAP amplitudes in µV (surface/needle electrodes) averaged 12.7 (SD 7.6)/40.6 (SD 20.8), P<0.001, for subjects aged 20-29 years, and 5.0 (SD 2.4)/19.8 (SD 9.8), P<0.01, for subjects aged > 60 years. SNAP amplitudes were smaller at the proximal recording location. DISCUSSION NCS using USNP yield higher amplitude responses than surface electrodes in all age groups at all recording sites. SNAP amplitudes are smaller at proximal recording locations due to sural nerve branching. This article is protected by copyright. All rights reserved.
Resumo:
The current standard for temperature sensitive imaging using magnetic resonance (MR) is 2-D, spoiled, fast gradient-echo (fGRE) phase-difference imaging exploiting temperature dependent changes in the proton resonance frequency (PRF). The echo-time (TE) for optimal sensitivity is larger than the typical repetition time (TR) of an fGRE sequence. Since TE must be less than TR in the fGRE sequence, this limits the technique's achievable sensitivity, spatial, and temporal resolution. This adversely affects both accuracy and volume coverage of the measurements. Accurate measurement of the rapid temperature changes associated with pulsed thermal therapies, such as high-intensity focused ultrasound (FUS), at optimal temperature sensitivity requires faster acquisition times than those currently available. ^ Use of fast MR acquisition strategies, such as interleaved echo-planar and spiral imaging, can provide the necessary increase in temporal performance and sensitivity while maintaining adequate signal-to-noise and in-plane spatial resolution. This research explored the adaptation and optimization of several fast MR acquisition methods for thermal monitoring of pulsed FUS thermal therapy. Temperature sensitivity, phase-difference noise and phase-difference to phase-difference-to noise ratio for the different pulse sequences were evaluated under varying imaging parameters in an agar gel phantom to establish optimal sequence parameters for temperature monitoring. The temperature sensitivity coefficient of the gel phantom was measured, allowing quantitative temperature extrapolations. ^ Optimized fast sequences were compared based on the ability to accurately monitor temperature changes at the focus of a high-intensity focused ultrasound unit, volume coverage, and contrast-to-noise ratio in the temperature maps. Operating parameters, which minimize complex phase-difference measurement errors introduced by use of the fast-imaging methods, were established. ^
Resumo:
The acoustic backscatter of encapsulated gas-filled microbubbles immersed in a weak compressible liquid and irradiated by ultrasound fields of moderate to high pressure amplitudes is investigated theoretically. The problem is formulated by considering, for the viscoelastic shell of finite thickness, an isotropic hyperelastic neo-Hookean model for the elastic contribution in addition to a Newtonian viscous component. First and second harmonic scattering cross-sections have been evaluated and the quantitative influence of the driving pressure amplitude on the harmonic resonance frequencies for different initial equilibrium bubble sizes and for different encapsulating physical properties has been determined. Conditions for optimal second harmonic imaging have been also investigated and some regions in the parameters space where the second harmonic intensity is dominant over the fundamental have been identified. Results have been obtained for albumin, lipid and polymer encapsulating shells, respectively.
Resumo:
The theoretical study of forced bubble oscillations is motivated by the importance of cavitation bubbles and oscillating encapsulated microbubbles (i.e. contrast agents) in medical sciences. In more details,theoretical studies on bubble dynamics addressing the sound-bubble interaction phenomenon provide the basis for understanding the dynamics of contrast agent microbubbles used in medical diagnosis and of non-linearly oscillating cavitation bubbles in the case of high-intensity ultrasound therapy. Moreover, the inclusion of viscoelasticity is of vital importance for an accurate theoretical analysis since most biological tissues and fluids exhibit non-Newtonian behavior.
Resumo:
Ultrasound wave velocity was measured in 30 pieces of Spanish Scots pine (Pinus sylvestris L.), 90 x 140 mm in cross-section and 4 m long. Five different sensor placement arrangements were used: end to end (V0), face to opposite face, edge to opposite edge, face to same face and edge to same edge. The pieces were successively shortened to 3, 2 and 1 m, in order to obtain these velocities and their ratios to reference value V0 for different lengths and angles with respect to the piece axis for the crossed measurements. The velocity obtained in crossed measurements is lower than V0. A correction coefficient for crossed velocities is proposed, depending on the angle, to adjust them to the V0 benchmark. The velocities measured on a surface, are also lower than V0, and their ratio with respect to V0 is close to 0.97 for distances equal to or greater than 18 times the depth of the beam.
Resumo:
A multiresidue method was developed for the simultaneous determination of 31 emerging contaminants (pharmaceutical compounds, hormones, personal care products, biocides and flame retardants) in aquatic plants. Analytes were extracted by ultrasound assisted-matrix solid phase dispersion (UA-MSPD) and determined by gas chromatography-mass spectrometry after sylilation. The method was validated for different aquatic plants (Typha angustifolia, Arundo donax and Lemna minor) and a semiaquatic cultivated plant (Oryza sativa) with good recoveries at concentrations of 100 and 25 ng g-1 wet weight, ranging from 70 to 120 %, and low method detection limits (0.3 to 2.2 ng g-1 wet weight). A significant difference of the chromatographic response was observed for some compounds in neat solvent versus matrix extracts and therefore quantification was carried out using matrix-matched standards in order to overcome this matrix effect. Aquatic plants taken from rivers located at three Spanish regions were analyzed and the compounds detected were parabens, bisphenol A, benzophenone-3, cyfluthrin and cypermethrin. The levels found ranged from 6 to 25 ng g-1 wet weight except for cypermethrin that was detected at 235 ng g-1 wet weight in Oryza sativa samples.
Resumo:
Cell-based therapy is a promising approach for many diseases, including ischemic heart disease. Cardiac mesoangioblasts are committed vessel-associated progenitors that can restore to a significant, although partial, extent, heart structure and function in a murine model of myocardial infarction. Low-intensity pulsed ultrasound (LIPUS) is a noninvasive form of mechanical energy that can be delivered into biological tissues as acoustic pressure waves, and is widely used for clinical applications including bone fracture healing. We hypothesized that the positive effects of LIPUS on bone and soft tissue, such as increased cell differentiation and cytoskeleton reorganization, could be applied to increase the therapeutic potential of mesoangioblasts for heart repair. In this work, we show that LIPUS stimulation of cardiac mesoangioblasts isolated from mouse and human heart results in significant cellular modifications that provide beneficial effects to the cells, including increased malleability and improved motility. Additionally, LIPUS stimulation increased the number of binucleated cells and induced cardiac differentiation to an extent comparable with 5´-azacytidine treatment. Mechanistically, LIPUS stimulation activated the BMP-Smad signalling pathway and increased the expression of myosin light chain-2 together with upregulation of β1 integrin and RhoA, highlighting a potentially important role for cytoskeleton reorganization. Taken together, these results provide functional evidence that LIPUS might be a useful tool to explore in the field of heart cell therapy
Resumo:
Interaction of diagnostic ultrasound with gas bodies produces a useful contrast effect in medical images, but the same interaction also represents a mechanism for bioeffects. Anesthetized hairless mice were scanned by using a 2.5-MHz transducer (610-ns pulses with 3.6-kHz repetition frequency and 61-Hz frame rate) after injection of Optison and Evans blue dye. Petechial hemorrhages (PHs) in intestine and abdominal muscle were counted 15 min after exposure to characterize capillary rupture, and Evans blue extravasation was evaluated in samples of muscle tissue. For 5 ml⋅kg-1 contrast agent and exposure to 10 alternating 10-s on and off periods, PH counts in muscle were approximately proportional to the square of peak negative pressure amplitude and were statistically significant above 0.64 MPa. PH counts in intestine and Evans blue extravasation into muscle tissue were significant above 1.0 MPa. The PH effect in muscle was proportional to contrast dose and was statistically significant for the lowest dose of 0.05 ml⋅kg-1. The effects decreased nearly to sham levels if the exposure was delayed 5 min. The PH effect in abdominal muscle was significant and statistically indistinguishable for uninterrupted 100-s exposure, 10-s exposure, 100 scans repeated at 1 Hz, and even for a single scan. The results confirms a previous report of PH induction by diagnostic ultrasound with contrast agent in mammalian skeletal muscle [Skyba, D. M., Price, R. J., Linka, A. Z., Skalak, T. C. & Kaul, S. (1998) Circulation 98, 290–293].
Resumo:
Objective: To assess the efficacy of ultrasound treatment for mild to moderate idiopathic carpal tunnel syndrome.
Resumo:
INTRODUÇÃO: Durante procedimentos endovasculares, estão presentes os riscos relacionados ao uso dos contrastes iodados, tais como a nefropatia por contraste, uma vez que é fundamental o emprego de um meio de contraste para a obtenção das imagens radiológicas vasculares. A injeção intravascular de gás CO2 purificado é reconhecidamente uma alternativa relativamente mais segura ao contraste iodado, contudo, seu manuseio artesanal pode também trazer dificuldades técnicas e riscos aos pacientes. Para contemplar estas questões, foi desenvolvido o protótipo de um injetor intravascular de CO2 medicinal, microprocessado, dedicado à obtenção de imagens angiográficas. OBJETIVOS: Realizar os testes de viabilidade técnica inicial do protótipo em modelo in vivo. MÉTODOS: Realizar a angioplastia da artéria renal esquerda de 10 porcos, divididos em 2 grupos: Grupo 1 (n=5) injeção de contraste iodado, Grupo 2 (n=5) injeção de CO2 através do protótipo. Monitorização clínica e laboratorial dos animais no pré, intra e pós-operatório, com exames de função renal na véspera e 48h após os procedimentos e 3 gasometrias arteriais seriadas no intra-operatório. Observação clínica foi mantida por 48h no pós- operatório. RESULTADOS: Os procedimentos de angioplastia com CO2 foram realizados com sucesso técnico de 100%, sem necessidade de complementação com injeção de contraste iodado no Grupo 2. Não foram identificadas falhas no protótipo em funcionamento. Não foram identificadas alterações clínicas ou radiológicas sugestivas de contaminação por ar ambiente do sistema de CO2 e nem alterações laboratoriais nos animais. As imagens angiográficas obtidas no Grupo 2 foram consideradas, numa avaliação subjetiva, relativamente inferiores às imagens obtidas no Grupo 1. DISCUSSÃO: A qualidade inferior de imagem no Grupo 2 pode ser atribuída ao equipamento de fluoroscopia utilizado, com software desatualizado em relação aos equipamentos atuais, que incluem pré-configurações para angiografia com CO2; no entanto, ainda assim todos os procedimentos propostos no Grupo 2 foram realizados com sucesso técnico, o que nos leva a classificar as imagens deste grupo 2 como satisfatórias. O manuseio do aparelho mostrou-se ágil e eficiente, com a programação dos parâmetros sendo realizada com facilidade através do visor \"touch screen\", comparativamente superior ao método artesanal de injeção de CO2 com seringas em selo d\'água. CONCLUSÕES: O protótipo do aparelho injetor intravascular de CO2 funcionou de forma adequada durante os testes e as imagens obtidas permitiram a compleição com sucesso dos procedimentos. Portanto, os resultados positivos obtidos sugerem que o equipamento é tecnicamente viável
Resumo:
A fast, simple and environmentally friendly ultrasound-assisted dispersive liquid-liquid microextraction (USA-DLLME) procedure has been developed to preconcentrate eight cyclic and linear siloxanes from wastewater samples prior to quantification by gas chromatography-mass spectrometry (GC-MS). A two-stage multivariate optimization approach has been developed employing a Plackett-Burman design for screening and selecting the significant factors involved in the USA-DLLME procedure, which was later optimized by means of a circumscribed central composite design. The optimum conditions were: extractant solvent volume, 13 µL; solvent type, chlorobenzene; sample volume, 13 mL; centrifugation speed, 2300 rpm; centrifugation time, 5 min; and sonication time, 2 min. Under the optimized experimental conditions the method gave levels of repeatability with coefficients of variation between 10 and 24% (n=7). Limits of detection were between 0.002 and 1.4 µg L−1. Calculated calibration curves gave high levels of linearity with correlation coefficient values between 0.991 and 0.9997. Finally, the proposed method was applied for the analysis of wastewater samples. Relative recovery values ranged between 71–116% showing that the matrix had a negligible effect upon extraction. To our knowledge, this is the first time that combines LLME and GC-MS for the analysis of methylsiloxanes in wastewater samples.