971 resultados para INTRANUCLEAR CASCADE CALCULATION
Resumo:
Thioridazine (THD) is a commonly prescribed phenotiazine neuroleptic drug, which is extensively biotransformed in the organism producing as main metabolites sulfoxides and a sulfone by sulfur oxidation Significant differences have been observed in the activity of the THD enantiomers as well as for its main metabolites, and enantioselectivity phenomena have been proved in the metabolic pathway. Here the assignment of the absolute configuration at the sulfur atom of enantiomeric THD-2-sulfoxide (THD-2-SO) has been carried out by circular dichroism (CD) spectroscopy The stereoisomers were separated by HPLC on Chiralpak AS column, recording the CD spectra for the two collected enantiomeric fractions The theoretical electronic CD spectrum has been obtained by the TDDFT/B3LYP/6-31G*. as Boltzmann averaging of the contributions calculated for the most stable conformations of the drug The comparison of the simulated and experimental spectra allowed the absolute configuration at the sulfur atom of the four THD-2-SO stereoisomers to be assigned The developed method should be useful for a reliable correlation between stereochemistry and activity and/or toxicity
Resumo:
The present work furnishes an innovative preparation of substituted indoles based on tandem hydroformylation, where the chemo- and the regio-selectivities are good, so the yield of the reaction. The novelty has been established in the four-step transformation of substituted alpha nitrocinnamaldehydes into desired indoles in a one-pot reaction. Under hydroformylation reaction conditions we have been able to trigger off a cascade of reactions, which gave substituted indoles in high yields. Useful intermediates are prepared by using this technique for the synthesis of well-known biologically active molecules. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
40Ar/39Ar laser incremental heating analyses of individual grains of supergene jarosite, alunite, and cryptomelane from weathering profiles in the Dugald River area, Queensland, Australia, show a strong positive correlation between a sample’s age and its elevation. We analyzed 125 grains extracted from 35 hand specimens collected from weathering profiles at 11 sites located at 3 distinct elevations. The highest elevation profile hosts the oldest supergene minerals, whereas progressively younger samples occur at lower positions in the landscape. The highest elevation sampling sites (three sites), located on top of an elongated mesa (255 to 275 m elevation), yield ages in the 16 to 12 Ma range. Samples from an intermediate elevation site (225 to 230 m elevation) yield ages in the 6 to 4 Ma range. Samples collected at the lowest elevation sites (200 to 220 m elevation) yield ages in the 2.2 to 0.8 Ma interval. Grains of supergene alunite, jarosite, and cryptomelane analyzed from individual single hand specimens yield reproducible results, confirming the suitability of these minerals to 40Ar/39Ar geochronology. Multiple samples collected from the same site also yield reproducible results, indicating that the ages measured are true precipitation ages for the samples analyzed. Different sites, up to 3 km apart, sampled from weathering profiles at the same elevation again yield reproducible results. The consistency of results confirms that 40Ar/39Ar geochronology of supergene jarosite, alunite, and cryptomelane yields ages of formation of weathering profiles, providing a reliable numerical basis for differentiating and correlating these profiles. The age versus elevation relationship obtained suggest that the stepped landscapes in the Dugald River area record a progressive downward migration of a relatively flat weathering front. The steps in the landscape result from differential erosion of previously weathered bedrock displaying different susceptibility to weathering and contrasting resistance to erosion. Combined, the age versus elevation relationships measured yield a weathering rate of 3.8 m. Myr−1 (for the past 15 Ma) if a descending subhorizontal weathering front is assumed. The results also permit the calculation of the erosion rate of the more easily weathered and eroded lithologies, assuming an initially flat landscape as proposed in models of episodic landscape development. The average erosion rate for the past 15 Ma is 3.3 m. Myr−1, consistent with erosion rates obtained by cosmogenic isotope studies in the region.
Resumo:
The calculation of quantum dynamics is currently a central issue in theoretical physics, with diverse applications ranging from ultracold atomic Bose-Einstein condensates to condensed matter, biology, and even astrophysics. Here we demonstrate a conceptually simple method of determining the regime of validity of stochastic simulations of unitary quantum dynamics by employing a time-reversal test. We apply this test to a simulation of the evolution of a quantum anharmonic oscillator with up to 6.022×1023 (Avogadro's number) of particles. This system is realizable as a Bose-Einstein condensate in an optical lattice, for which the time-reversal procedure could be implemented experimentally.
Resumo:
Simple techniques are presented for rearrangement of an infinite series in a systematic way such that the convergence of the resulting expression is accelerated. These procedures also allow calculation of required boundary derivatives. Several examples of conduction and diffusion-reaction problems illustrate the methods.
Resumo:
The BR algorithm is a novel and efficient method to find all eigenvalues of upper Hessenberg matrices and has never been applied to eigenanalysis for power system small signal stability. This paper analyzes differences between the BR and the QR algorithms with performance comparison in terms of CPU time based on stopping criteria and storage requirement. The BR algorithm utilizes accelerating strategies to improve its performance when computing eigenvalues of narrowly banded, nearly tridiagonal upper Hessenberg matrices. These strategies significantly reduce the computation time at a reasonable level of precision. Compared with the QR algorithm, the BR algorithm requires fewer iteration steps and less storage space without depriving of appropriate precision in solving eigenvalue problems of large-scale power systems. Numerical examples demonstrate the efficiency of the BR algorithm in pursuing eigenanalysis tasks of 39-, 68-, 115-, 300-, and 600-bus systems. Experiment results suggest that the BR algorithm is a more efficient algorithm for large-scale power system small signal stability eigenanalysis.
Resumo:
Little is known about Mg induced Ca deficiency in alkaline conditions, and the relationship between Mg induced Ca deficiency and Na induced Ca deficiency. Dilute nutrient solutions (dominated by Mg) were used to investigate the effect of Ca activity ratio (CAR) on the growth of mungbeans (Vigna radiata (L.) Wilczek cv. Emerald). At pH 9.0, root growth was reduced below a critical CAR of 0.050 (corresponding to 90 % relative root length). Root growth was found to be limited more in Mg solutions than had been previously observed for Na solutions. Using a CAR equation modified with plasma membrane binding constants (to incorporate the differing antagonistic effects of Mg and Na), new critical CAR values were calculated for both Na (0.56) and Mg (0.44) dominated solutions. This modified CAR equation permits the calculation of CAR irrespective of the dominant salt present.
Resumo:
The ability to predict leaf area and leaf area index is crucial in crop simulation models that predict crop growth and yield. Previous studies have shown existing methods of predicting leaf area to be inadequate when applied to a broad range of cultivars with different numbers of leaves. The objectives of the study were to (i) develop generalised methods of modelling individual and total plant leaf area, and leaf senescence, that do not require constants that are specific to environments and/or genotypes, (ii) re-examine the base, optimum, and maximum temperatures for calculation of thermal time for leaf senescence, and (iii) assess the method of calculation of individual leaf area from leaf length and leaf width in experimental work. Five cultivars of maize differing widely in maturity and adaptation were planted in October 1994 in south-eastern Queensland, and grown under non-limiting conditions of water and plant nutrient supplies. Additional data for maize plants with low total leaf number (12-17) grown at Katumani Research Centre, Kenya, were included to extend the range in the total leaf number per plant. The equation for the modified (slightly skewed) bell curve could be generalised for modelling individual leaf area, as all coefficients in it were related to total leaf number. Use of coefficients for individual genotypes can be avoided, and individual and total plant leaf area can be calculated from total leaf number. A single, logistic equation, relying on maximum plant leaf area and thermal time from emergence, was developed to predict leaf senescence. The base, optimum, and maximum temperatures for calculation of thermal time for leaf senescence were 8, 34, and 40 degrees C, and apply for the whole crop-cycle when used in modelling of leaf senescence. Thus, the modelling of leaf production and senescence is simplified, improved, and generalised. Consequently, the modelling of leaf area index (LAI) and variables that rely on LAI will be improved. For experimental purposes, we found that the calculation of leaf area from leaf length and leaf width remains appropriate, though the relationship differed slightly from previously published equations.
Resumo:
Patterns of population subdivision and the relationship between gene flow and geographical distance in the tropical estuarine fish Lares calcarifer (Centropomidae) were investigated using mtDNA control region sequences. Sixty-three putative haplotypes were resolved from a total of 270 individuals from nine localities within three geographical regions spanning the north Australian coastline. Despite a continuous estuarine distribution throughout the sampled range, no haplotypes were shared among regions. However, within regions, common haplotypes were often shared among localities. Both sequence-based (average Phi(ST)=0.328) and haplotype-based (average Phi(ST)=0.182) population subdivision analyses indicated strong geographical structuring. Depending on the method of calculation, geographical distance explained either 79 per cent (sequence-based) or 23 per cent (haplotype-based) of the variation in mitochondrial gene flow. Such relationships suggest that genetic differentiation of L. calcarifer has been generated via isolation-by-distance, possibly in a stepping-stone fashion. This pattern of genetic structure is concordant with expectations based on the life history of L. calcarifer and direct studies of its dispersal patterns. Mitochondrial DNA variation, although generally in agreement with patterns of allozyme variation, detected population subdivision at smaller spatial scales. Our analysis of mtDNA variation in L. calcarifer confirms that population genetic models can detect population structure of not only evolutionary significance but also of demographic significance. Further, it demonstrates the power of inferring such structure from hypervariable markers, which correspond to small effective population sizes.
Resumo:
The Mellow and Autler-Townes probe absorption spectra of a three-level atom in a cascade configuration with the lower transition coherently driven and also coupled to a narrow bandwidth squeezed-vacuum field are studied. Analytical studies of the modifications caused by the finite squeezed-vacuum bandwidth to the spectra are made for the case when the Rabi frequency of the driving field is much larger than the natural linewidth. The squeezed vacuum center frequency and the driving laser frequency are assumed equal. We show that the spectral features depend on the bandwidth of a squeezed vacuum field and whether the sources of the squeezing field are degenerate (DPA) or nondegenerate (NDPA) parametric amplifiers. In a broadband or narrow bandwidth squeezed vacuum generated by a NDPA, the central component of the Mellow spectrum can be significantly narrower than that in the normal vacuum. When the source of the squeezed vacuum is a DPA, the central feature is insensitive to squeezing. The Rabi sidebands, however, can be significantly narrowed only in the squeezed vacuum produced by the DPA. The two lines of the Autler-Townes absorption spectrum can be narrowed only in a narrow bandwidth squeezed vacuum, whereas they are independent of the phase and are always broadened in a broadband squeezed vacuum.
Resumo:
Segregation of mRNAs in the cytoplasm of polar cells has been demonstrated for proteins involved in Xenopus and Drosophila oogenesis, and for some proteins in somatic cells. It is assumed that vectorial transport of the messages is generally responsible for this localization. The mRNA encoding the basic protein of central nervous system myelin is selectively transported to the distal ends of the processes of oligodendrocytes, where it is anchored to the myelin membrane and translated. This transport is dependent on a 21-nucleotide cis-acting segment of the 3'-untranslated region (RTS). Proteins that bind to this cis-acting segment have now been isolated from extracts of rat brain. A group of six 35-42-kDa proteins bind to a 35-base oligoribonucleotide incorporating the RTS, but not to several oligoribonucleotides with the same composition but randomized sequences, thus establishing specificity for the base sequence in the RTS. The most abundant of these proteins has been identified, by Edman sequencing of tryptic peptides and mass spectroscopy, as heterogeneous nuclear ribonucleoprotein (hnRNP) A2, a 36-kDa member of a family of proteins that are primarily, but not solely, intranuclear. This protein was most abundant in samples from rat brain and testis, with lower amounts in other tissues. It was separated from the other polypeptides by using reverse-phase HPLC and shown to retain preferential association with the RTS. In cultured oligodendrocytes, hnRNP A2 was demonstrated by confocal microscopy to be distributed throughout the nucleus, cell soma, and processes.
Resumo:
Extended gcd calculation has a long history and plays an important role in computational number theory and linear algebra. Recent results have shown that finding optimal multipliers in extended gcd calculations is difficult. We present an algorithm which uses lattice basis reduction to produce small integer multipliers x(1), ..., x(m) for the equation s = gcd (s(1), ..., s(m)) = x(1)s(1) + ... + x(m)s(m), where s1, ... , s(m) are given integers. The method generalises to produce small unimodular transformation matrices for computing the Hermite normal form of an integer matrix.
Resumo:
Hysterectomy fractions by age group for particular periods are of interest for: estimating proper population denominators for calculation of disease and procedure rates affecting the cervix and uterus; estimating the target population for Pap test programs, and response rates; and as a way of displaying the cumulative consequences of hysterectomies in a population. Hysterectomy fractions for populations can be determined by direct inquiry via a representative sample survey, or, as in this study, from prior hysterectomy rates of the cohorts of women which compose each age bracket. Hysterectomy data 1979-93 were obtained from the hospital In-patients Statistics Collection (ISC) which covers both public and private hospitals in NSW. Annual population denominators of women were obtained from Census data. Data were modelled by Poisson regression, using five.-year age group (15-greater than or equal to 85 years), annual period, and five-year birth cohort (APC model). Forward- and back-projection of the period effects were undertaken. The resultant NSW hysterectomy fractions by age and period are consistent with fractions obtained from modelled hysterectomy rates for Western Australia (1980-84), and fractions from national representative sample surveys (1989/90 and 1995) for younger women, but not for women aged greater than or equal to 70 years in 1995, which revealed higher hysterectomy fractions than modelled hysterectomy data would suggest. Hysterectomy fractions for NSW women by five-year age group for quinquennia centred on 1971 to 2006 are provided.
Resumo:
Background: The ornamental tobacco Nicotiana alata produces a series of proteinase inhibitors (Pls) that are derived from a 43 kDa precursor protein, NaProPl. NaProPl contains six highly homologous repeats that fold to generate six separate structural domains, each corresponding to one of the native Pls. An unusual feature of NaProPl is that the structural domains lie across adjacent repeats and that the sixth Pl domain is generated from fragments of the first and sixth repeats. Although the homology of the repeats suggests that they may have arisen from gene duplication, the observed folding does not appear to support this. This study of the solution structure of a single NaProPl repeat (aPl1) forms a basis for unravelling the mechanism by which this protein may have evolved, Results: The three-dimensional structure of aPl1 closely resembles the triple-stranded antiparallel beta sheet observed in each of the native Pls. The five-residue sequence Glu-Glu-Lys-Lys-Asn, which forms the linker between the six structural domains in NaProPl, exists as a disordered loop in aPl1. The presence of this loop in aPl1 results in a loss of the characteristically flat and disc-like topography of the native inhibitors. Conclusions: A single repeat from NaProPl is capable of folding into a compact globular domain that displays native-like Pl activity. Consequently, it is possible that a similar single-domain inhibitor represents the ancestral protein from which NaProPl evolved.
Resumo:
This is the first paper in a study on the influence of the environment on the crack tip strain field for AISI 4340. A stressing stage for the environmental scanning electron microscope (ESEM) was constructed which was capable of applying loads up to 60 kN to fracture-mechanics samples. The measurement of the crack tip strain field required preparation (by electron lithography or chemical etching) of a system of reference points spaced at similar to 5 mu m intervals on the sample surface, loading the sample inside an electron microscope, image processing procedures to measure the displacement at each reference point and calculation of the strain field. Two algorithms to calculate strain were evaluated. Possible sources of errors were calculation errors due to the algorithm, errors inherent in the image processing procedure and errors due to the limited precision of the displacement measurements. Estimation of the contribution of each source of error was performed. The technique allows measurement of the crack tip strain field over an area of 50 x 40 mu m with a strain precision better than +/- 0.02 at distances larger than 5 mu m from the crack tip. (C) 1999 Kluwer Academic Publishers.