938 resultados para INDUCED PHASE-TRANSITIONS
Resumo:
For patients with chronic lung diseases, such as chronic obstructive pulmonary disease (COPD), exacerbations are life-threatening events causing acute respiratory distress that can even lead to hospitalization and death. Although a great deal of effort has been put into research of exacerbations and potential treatment options, the exact underlying mechanisms are yet to be deciphered and no therapy that effectively targets the excessive inflammation is available. In this study, we report that interleukin-1β (IL-1β) and interleukin-17A (IL-17A) are key mediators of neutrophilic inflammation in influenza-induced exacerbations of chronic lung inflammation. Using a mouse model of disease, our data shows a role for IL-1β in mediating lung dysfunction, and in driving neutrophilic inflammation during the whole phase of viral infection. We further report a role for IL-17A as a mediator of IL-1β induced neutrophilia at early time points during influenza-induced exacerbations. Blocking of IL-17A or IL-1 resulted in a significant abrogation of neutrophil recruitment to the airways in the initial phase of infection or at the peak of viral replication, respectively. Therefore, IL-17A and IL-1β are potential targets for therapeutic treatment of viral exacerbations of chronic lung inflammation.
Resumo:
The current study was initiated to quantify the stresses induced in critical details on the reinforcing jacket and the tower itself through the use of field instrumentation, load testing, and long-term monitoring. Strain gages were installed on the both the tower and the reinforcing jacket. Additional strain gages were installed on two anchor rods. Tests were conducted with and without the reinforcing jacket installed. Data were collected from all strain gages during static load testing and were used to study the stress distribution of the tower caused by known loads, both with and without the reinforcing jacket. The tower was tested dynamically by first applying a static load, and then quickly releasing the load causing the tower to vibrate freely. Furthermore, the tower was monitored over a period of over 1 year to obtain stress range histograms at the critical details to be used for a fatigue evaluation. Also during the long-term monitoring, triggered time-history data were recorded to study the wind loading phenomena that excite the tower.
Resumo:
OBJECTIVE: The pro-inflammatory cytokine interleukin-1 beta (IL-1 beta) generates pancreatic beta-cells apoptosis mainly through activation of the c-Jun NH(2)-terminal kinase (JNK) pathway. This study was designed to investigate whether the long-acting agonist of the hormone glucagon-like peptide 1 (GLP-1) receptor exendin-4 (ex-4), which mediates protective effects against cytokine-induced beta-cell apoptosis, could interfere with the JNK pathway. RESEARCH DESIGN AND METHODS: Isolated human, rat, and mouse islets and the rat insulin-secreting INS-1E cells were incubated with ex-4 in the presence or absence of IL-1 beta. JNK activity was assessed by solid-phase JNK kinase assay and quantification of c-Jun expression. Cell apoptosis was determined by scoring cells displaying pycnotic nuclei. RESULTS: Ex-4 inhibited induction of the JNK pathway elicited by IL-1 beta. This effect was mimicked with the use of cAMP-raising agents isobutylmethylxanthine and forskolin and required activation of the protein kinase A. Inhibition of the JNK pathway by ex-4 or IBMX and forskolin was concomitant with a rise in the levels of islet-brain 1 (IB1), a potent blocker of the stress-induced JNK pathway. In fact, ex-4 as well as IBMX and forskolin induced expression of IB1 at the promoter level through cAMP response element binding transcription factor 1. Suppression of IB1 levels with the use of RNA interference strategy impaired the protective effects of ex-4 against apoptosis induced by IL-1 beta. CONCLUSIONS: The data establish the requirement of IB1 in the protective action of ex-4 against apoptosis elicited by IL-1 beta and highlight the GLP-1 mimetics as new potent inhibitors of the JNK signaling induced by cytokines.
Resumo:
Kinetic parameters of T cell receptor (TCR) interactions with its ligand have been proposed to control T cell activation. Analysis of kinetic data obtained has so far produced conflicting insights; here, we offer a consideration of this problem. As a model system, association and dissociation of a soluble TCR (sT1) and its specific ligand, an azidobenzoic acid derivative of the peptide SYIPSAEK-(ABA)I (residues 252-260 from Plasmodium berghei circumsporozoite protein), bound to class I MHC H-2K(d)-encoded molecule (MHCp) were studied by surface plasmon resonance. The association time courses exhibited biphasic patterns. The fast and dominant phase was assigned to ligand association with the major fraction of TCR molecules, whereas the slow component was attributed to the presence of traces of TCR dimers. The association rate constant derived for the fast phase, assuming a reversible, single-step reaction mechanism, was relatively slow and markedly temperature-dependent, decreasing from 7.0 x 10(3) at 25 degrees C to 1.8 x 10(2) M(-1).s(-1) at 4 degrees C. Hence, it is suggested that these observed slow rate constants are the result of unresolved elementary steps of the process. Indeed, our analysis of the kinetic data shows that the time courses of TCR-MHCp interaction fit well to two different, yet closely related mechanisms, where an induced fit or a preequilibrium of two unbound TCR conformers are operational. These mechanisms may provide a rationale for the reported conformational flexibility of the TCR and its unusual ligand recognition properties, which combine high specificity with considerable crossreactivity.
Resumo:
We have studied sidebranching induced by fluctuations in dendritic growth. The amplitude of sidebranching induced by internal (equilibrium) concentration fluctuations in the case of solidification with solutal diffusion is computed. This amplitude turns out to be significantly smaller than values reported in previous experiments. The effects of other possible sources of fluctuations (of an external origin) are examined by introducing nonconserved noise in a phase-field model. This reproduces the characteristics of sidebranching found in experiments. Results also show that sidebranching induced by external noise is qualitatively similar to that of internal noise, and it is only distinguished by its amplitude.
Resumo:
BACKGROUND: Letrozole radiosensitises breast cancer cells in vitro. In clinical settings, no data exist for the combination of letrozole and radiotherapy. We assessed concurrent and sequential radiotherapy and letrozole in the adjuvant setting. METHODS: This phase 2 randomised trial was undertaken in two centres in France and one in Switzerland between Jan 12, 2005, and Feb 21, 2007. 150 postmenopausal women with early-stage breast cancer were randomly assigned after conserving surgery to either concurrent radiotherapy and letrozole (n=75) or sequential radiotherapy and letrozole (n=75). Randomisation was open label with a minimisation technique, stratified by investigational centres, chemotherapy (yes vs no), radiation boost (yes vs no), and value of radiation-induced lymphocyte apoptosis (< or = 16% vs >16%). Whole breast was irradiated to a total dose of 50 Gy in 25 fractions over 5 weeks. In the case of supraclavicular and internal mammary node irradiation, the dose was 44-50 Gy. Letrozole was administered orally once daily at a dose of 2.5 mg for 5 years (beginning 3 weeks pre-radiotherapy in the concomitant group, and 3 weeks post-radiotherapy in the sequential group). The primary endpoint was the occurrence of acute (during and within 6 weeks of radiotherapy) and late (within 2 years) radiation-induced grade 2 or worse toxic effects of the skin. Analyses were by intention to treat. This study is registered with ClinicalTrials.gov, number NCT00208273. FINDINGS: All patients were analysed apart from one in the concurrent group who withdrew consent before any treatment. During radiotherapy and within the first 12 weeks after radiotherapy, 31 patients in the concurrent group and 31 in the sequential group had any grade 2 or worse skin-related toxicity. The most common skin-related adverse event was dermatitis: four patients in the concurrent group and six in the sequential group had grade 3 acute skin dermatitis during radiotherapy. At a median follow-up of 26 months (range 3-40), two patients in each group had grade 2 or worse late effects (both radiation-induced subcutaneous fibrosis). INTERPRETATION: Letrozole can be safely delivered shortly after surgery and concomitantly with radiotherapy. Long-term follow-up is needed to investigate cardiac side-effects and cancer-specific outcomes. FUNDING: Novartis Oncology France.
Resumo:
Purpose/Objective(s): Letrozole radiosensitizes breast cancer cells in vitro. In clinical settings, no data exist for the combination of letrozole and radiotherapy. We assessed concurrent and sequential radiotherapy and letrozole in the adjuvant setting.Materials/Methods: The present study is registered with ClinicalTrials.gov, number NCT00208273. This Phase 2 randomized trial was undertaken in two centers in France and one in Switzerland between January 12, 2005, and February 21, 2007. One hundred fifty postmenopausal women with early-stage breast cancer were randomly assigned after conserving surgery to either concurrent radiotherapy and letrozole (n = 75) or sequential radiotherapy and letrozole (n = 75). Randomization was open label with a minimization technique, stratified by investigational centers, chemotherapy (yes vs. no), radiation boost (yes vs. no), and value of radiation-induced lymphocyte apoptosis (#16% vs. .16%). The whole breast was irradiated to a total dose of 50 Gy in 25 fractions over 5 weeks. In the case of supraclavicular and internal mammary node irradiation, the dose was 44 - 50 Gy. Letrozole was administered orally once daily at a dose of 2 - 5 mg for 5 years (beginning 3 weeks pre-radiotherapy in the concomitant group, and 3 weeks postradiotherapy in the sequential group). The primary endpoint was the occurrence of acute (during and within 6 weeks of radiotherapy) and late (within 2 years) radiation-induced Grade 2 or worse toxic effects of the skin and lung (functional pulmonary test and lung CT-scan). Analyses were by intention-to-treat. The long-term follow-up after 2 years was only performed in Montpellier (n = 121) and evaluated skin toxicity (clinical examination every 6 months), lung fibrosis (one CT-scan yearly), cosmetic outcome.Results: All patients were analyzed apart from 1 in the concurrent group who withdrew consent before any treatment.Within the first 2 years (n = 149), no lung toxicity was identified by CT scan and no modification from baseline was noted by the lung diffusion capacity test. Two patients in each group had Grade 2 or worse late effects (both radiation-induced subcutaneous fibrosis [RISF]). After 2 years (n = 121), and with a median follow-up of 50 months (38-62), 2 patients (1 in each arm) presented a Grade 3 RISF. No lung toxicity was identified by CT scan. Cosmetic results (photographies) and quality of life was good to excellent. All patients who had Grade 3 subcutaneous fibrosis had an RILA value of 16% or less, irrespective of the sequence with letrozole.Conclusions:With long-term follow-up, letrozole can be safely delivered shortly after surgery and concomitantly with radiotherapy.
Resumo:
Yeast vacuoles fragment and fuse in response to environmental conditions, such as changes in osmotic conditions or nutrient availability. Here we analyze osmotically induced vacuole fragmentation by time-lapse microscopy. Small fragmentation products originate directly from the large central vacuole. This happens by asymmetrical scission rather than by consecutive equal divisions. Fragmentation occurs in two distinct phases. Initially, vacuoles shrink and generate deep invaginations that leave behind tubular structures in their vicinity. Already this invagination requires the dynamin-like GTPase Vps1p and the vacuolar proton gradient. Invaginations are stabilized by phosphatidylinositol 3-phosphate (PI(3)P) produced by the phosphoinositide 3-kinase complex II. Subsequently, vesicles pinch off from the tips of the tubular structures in a polarized manner, directly generating fragmentation products of the final size. This phase depends on the production of phosphatidylinositol-3,5-bisphosphate and the Fab1 complex. It is accelerated by the PI(3)P- and phosphatidylinositol 3,5-bisphosphate-binding protein Atg18p. Thus vacuoles fragment in two steps with distinct protein and lipid requirements.
Resumo:
Dynamic behavior of bothisothermal and non-isothermal single-column chromatographic reactors with an ion-exchange resin as the stationary phase was investigated. The reactor performance was interpreted by using results obtained when studying the effect of the resin properties on the equilibrium and kinetic phenomena occurring simultaneously in the reactor. Mathematical models were derived for each phenomenon and combined to simulate the chromatographic reactor. The phenomena studied includes phase equilibria in multicomponent liquid mixture¿ion-exchange resin systems, chemicalequilibrium in the presence of a resin catalyst, diffusion of liquids in gel-type and macroporous resins, and chemical reaction kinetics. Above all, attention was paid to the swelling behavior of the resins and how it affects the kinetic phenomena. Several poly(styrene-co-divinylbenzene) resins with different cross-link densities and internal porosities were used. Esterification of acetic acid with ethanol to produce ethyl acetate and water was used as a model reaction system. Choosing an ion-exchange resin with a low cross-link density is beneficial inthe case of the present reaction system: the amount of ethyl acetate as well the ethyl acetate to water mole ratio in the effluent stream increase with decreasing cross-link density. The enhanced performance of the reactor is mainly attributed to increasing reaction rate, which in turn originates from the phase equilibrium behavior of the system. Also mass transfer considerations favor the use ofresins with low cross-link density. The diffusion coefficients of liquids in the gel-type ion-exchange resins were found to fall rapidly when the extent of swelling became low. Glass transition of the polymer was not found to significantlyretard the diffusion in sulfonated PS¿DVB ion-exchange resins. It was also shown that non-isothermal operation of a chromatographic reactor could be used to significantly enhance the reactor performance. In the case of the exothermic modelreaction system and a near-adiabatic column, a positive thermal wave (higher temperature than in the initial state) was found to travel together with the reactive front. This further increased the conversion of the reactants. Diffusion-induced volume changes of the ion-exchange resins were studied in a flow-through cell. It was shown that describing the swelling and shrinking kinetics of the particles calls for a mass transfer model that explicitly includes the limited expansibility of the polymer network. A good description of the process was obtained by combining the generalized Maxwell-Stefan approach and an activity model that was derived from the thermodynamics of polymer solutions and gels. The swelling pressure in the resin phase was evaluated by using a non-Gaussian expression forthe polymer chain length distribution. Dimensional changes of the resin particles necessitate the use of non-standard mathematical tools for dynamic simulations. A transformed coordinate system, where the mass of the polymer was used as a spatial variable, was applied when simulating the chromatographic reactor columns as well as the swelling and shrinking kinetics of the resin particles. Shrinking of the particles in a column leads to formation of dead volume on top of the resin bed. In ordinary Eulerian coordinates, this results in a moving discontinuity that in turn causes numerical difficulties in the solution of the PDE system. The motion of the discontinuity was eliminated by spanning two calculation grids in the column that overlapped at the top of the resin bed. The reactive and non-reactive phase equilibrium data were correlated with a model derived from thethermodynamics of polymer solution and gels. The thermodynamic approach used inthis work is best suited at high degrees of swelling because the polymer matrixmay be in the glassy state when the extent of swelling is low.
Resumo:
La sclérose en plaques (SEP) est une maladie démyélinisante du système nerveux central (SNC) provoquant des pertes motrices, sensitives et cognitives. La SEP se déclare chez le jeune adulte ayant des prédispositions génétiques, mais semble induite, par des facteurs environnementaux. La SEP touche principalement les femmes et sa prévalence dans les zones à haut risque, tel que la Suisse, est de 0.1%. Bien que son étiologie exacte reste méconnue, nous savons que la maladie est médiée par des lymphocytes T autoréactifs périphériques, qui infiltrent le SNC où ils activent d'autres cellules immunitaires ainsi que les cellules du SNC elles-mêmes, créant un foyer inflammatoire, qui va attaquer et finir par tuer les oligodendrocytes et les neurones. Les épisodes inflammatoires sont entrecoupés par des phases de rémission associées à une guérison partielle des lésions. Cette première phase de la maladie, comprenant des épisodes inflammatoires et de rémissions est appelé SEP récurrente-rémittente (SEP-RR) et touche 90% des patients. Elle évolue, dans deux-tiers des cas, vers une SEP secondaire progressive (SEP-SP), qui est caractérisée par une progression constante de la maladie, associée à une réduction de l'inflammation mais une augmentation de la neurodégénérescence. Les patients souffrants de SEP primaire progressive (SEP-PP) développent directement les symptômes de la phase progressive de la maladie. Les thérapies disponibles ont considérablement amélioré l'évolution de la maladie des patients SEP-RR, en agissant sur une diminution de la réponse immunitaire et donc de l'inflammation. Cependant, ces traitements sont inefficaces chez les patients SEP-SP et SEP-PP, n'agissant pas sur la neurodégénérescence. IL-22, une cytokine sécrétée notoirement par les cellules Th17, a été associée à la SEP en contribuant à la perméabilisation de la barrière hémato-encéphalique et à l'inflammation du SNC, qui sont des étapes clés de la pathogenèse de la maladie. En outre, le gène codant pour un inhibiteur puissant d'IL- 22, 'IL-22 binding protein' (IL-22BP), a été démontré comme un facteur de risque de la SEP. Ces indices nous ont poussés à nous intéresser de plus près au rôle de l'IL-22 dans la SEP. Nous avons pu montrer qu'IL-22 et IL-22BP étaient augmentées dans le sang des patients SEP par rapport à des sujets sains. Nous avons trouvé qu'IL-22 cible spécifiquement les astrocytes dans le SNC et que son récepteur est particulièrement exprimé dans les lésions des patient SEP. Contre toute attente, nous avons pu montrer que l'IL-22 semble soutenir la survie des astrocytes. Cette découverte, suggérant qu'IL-22 serait protecteur pour le SNC et pour la SEP, confirme de récentes publications et ouvre la voie à de potentielles applications thérapeutiques. En parallèle, dans le but de mieux comprendre l'immunopathogenèse de la SEP, nous avons développé les techniques de culture de cellules souches pluripotentes induites (iPSC). Nos iPSC sont dérivées du sang des donneurs et acquièrent toutes les propriétés des cellules souches embryonnaires après induction. Les iPSC peuvent ensuite être différenciées en différents types de cellules, dont les cellules du SNC. Nous avons ainsi pu obtenir avec succès des neurones, dérivés de cellules du sang, en passant par le stade des iPSC. La prochaine étape consiste à générer des cultures d'astrocytes et d'oligodendrocytes et ainsi obtenir les principales cellules du SNC, le but étant de former de véritables 'cerveaux-en-culture'. Cet outil semble particulièrement adapté à l'étude de l'activité de diverses molécules sur les cellules du SNC, comme par exemple l'IL-22 et d'autres molécules ayant un potentiel intérêt thérapeutique au niveau du SNC. Le but ultime étant de développer des co-cultures de cellules du SNC avec des cellules immunitaires autologues, de patients SEP et de sujets sains, afin de mettre en évidence l'attaque des cellules du SNC par des leucocytes autoréactifs. Ce projet prospectif a permis d'accroître nos connaissance sur des aspects immunitaires de la SEP et à pour but de mieux comprendre l'immunopathogenèse de la SEP afin d'élaborer de nouvelles stratégies thérapeutiques. -- La sclérose en plaques est une maladie auto-inflammatoire du système nerveux central conduisant à la destruction de la myéline, indispensable à la conduction nerveuse, et finalement à la mort des neurones eux-mêmes. Cela a pour conséquence des pertes motrices, sensorielles et cognitives, qui ont tendance à s'aggraver au fil de la maladie. Elle se déclare chez le jeune adulte, entre l'âge de 20 et 40 ans, et prédomine chez la femme. En Suisse, environ une personne sur l'OOO est atteinte de sclérose en plaques. Les causes exactes de cette maladie, qui incluent des facteurs génétiques et environnementaux, sont encore mal connues. Des traitements de plus en plus efficaces ont été développés ces dernières années et ont permis de drastiquement améliorer l'évolution de la maladie chez les patients atteints de sclérose en plaques. Cependant, ces traitements ne sont efficaces que sur certaines catégories de patients et peuvent engendrer de lourds effets secondaires. Ces thérapies agissent presque exclusivement sur les cellules du système immunitaire en les désactivant partiellement, mais pas sur les cellules nerveuses, qui sont pourtant celles qui conditionnent le devenir du patient. Le développement de médicaments protégeant ou permettant la régénération des cellules du système nerveux central est donc primordial. L'étude de l'interleukine-22 nous a permis de montrer que cette cytokine ('hormone' du système immunitaire) pouvait cibler spécifiquement les astrocytes, des cellules gliales qui jouent un rôle central dans le maintien de l'équilibre du système nerveux central. Nos recherches ont montré que cette interleukine-22 permettrait une meilleure survie des astrocytes durant la phase aiguë de la maladie et aurait aussi des propriétés neuroprotectrices. En parallèle, nous sommes en train de développer un nouveau modèle in vitro d'étude de la sclérose en plaques grâce à la technologie des cellules souches pluripotentes induites. Ces cellules souches sont induites à partir de cellules du sang du donneur et acquièrent toutes les caractéristiques des cellules souches embryonnaires présentes dans un organisme en formation. Ainsi, ces cellules souches pluripotentes ont, par exemple, la capacité de se différencier en cellules du système nerveux central. Nous avons pu, de cette manière, obtenir des neurones. Le but ultime serait de pouvoir reconstituer une ébauche de cerveau in vitro, en cultivant ensemble différents types de cellules du système nerveux central, afin d'y réaliser des expériences avec des cellules immunitaires du même donneur. Ces travaux ont pour but d'améliorer notre compréhension de la pathogenèse de la sclérose en plaques et de permettre le développement de nouvelles stratégies thérapeutiques. --Multiple sclerosis (MS) is a demyelinating disease of the central nervous system leading to cognitive, sensitive and motor disabilities. MS occurs in genetically predisposed young adults with probable environmental triggers. MS affects predominantly women and its prevalence in high risk area such as Switzerland is 0.1%. Though its exact aetiology remains undetermined, we know that autoreactive T cells from de periphery are reactivated and recruited into the central nervous system (CNS) were they further activate other immune cells and resident cells, creating inflammatory foci, where oligodendrocytes and neurons are insulted and, eventually, killed. Inflammatory episodes, called relapses, are interspersed with remission phases where partial recovery of the lesions occurs. This first phase of the disease, occurring in 90% of the patients, is called relapsing-remitting MS (RR-MS) and is leading, in two-third of the cases, to secondary-progressive MS (SP-MS), where there is a continuous steady progression of the disease, associated with reduced inflammation but increased neurodegeneration. Primary-progressive MS (PP-MS) patients experience directly this progressive phase of the disease. Whereas disease modifying therapies have dramatically ameliorated the disease course of RR-MS patients by dampening immunity and, in turn, inflammation, treatments of SP-MS and PP-MS patients, who suffer primarily from the neurodegenerative aspect of the disease, are still inexistent. IL-22, a pro-inflammatory Th17 cell cytokine, has been associated with MS by participating to blood-brain barrier infiltration and CNS inflammation, which are crucial steps in MS pathogenesis. In addition, the gene coding for IL-22 binding protein (IL-22BP), which is a potent secreted IL-22 inhibitor, has been associated with MS risk. These findings call for further investigation on the role of IL-22 in MS. We detected increased IL-22 and IL-22BP in the blood of MS patients as compared to healthy controls. Acting exclusively on cells of nonhematopoietic origin, we found that IL-22 targets specifically astrocytes in the CNS and that its receptor is highly expressed in the lesion of MS patients. Unexpectedly, we found that IL-22 seems to promote survival of astrocytes. This finding, suggesting that IL-22 might be protective for the CNS in the context of MS, is consistent with recent publications and might open putative therapeutic applications at the CNS level. In parallel, with the aim of better understanding the immunopathogenesis of MS, we developed induced pluripotent stem cell (iPSC) techniques. IPSC are derived from blood cells of the donors and bear embryonic stem cell properties. IPSC can be differentiated into various cell types including CNS cells. We successfully obtained neurons derived from the donor blood cells, through iPSC. We further aim at developing astrocytes and oligodendrocytes cultures to recreate a 'brain-in-a-dish'. This would be a powerful tool to test the activity of various compounds on CNS cells, including IL-22 and other putative neuroprotective drugs. Ultimately, the goal is to develop co-cultures of CNS cells with autologous immune cells of MS patients as well as healthy controls to try to expose evidence of CNS cells targeted by autoreactive leukocytes. This prospective project has increased our knowledge of immune aspects of MS and further aims at better understanding the immunopathology of MS in order to pave the way to the elaboration of new therapeutic strategies.
Resumo:
BACKGROUND: One of the standard options in the treatment of stage IIIA/N2 non-small-cell lung cancer is neoadjuvant chemotherapy and surgery. We did a randomised trial to investigate whether the addition of neoadjuvant radiotherapy improves outcomes. METHODS: We enrolled patients in 23 centres in Switzerland, Germany and Serbia. Eligible patients had pathologically proven, stage IIIA/N2 non-small-cell lung cancer and were randomly assigned to treatment groups in a 1:1 ratio. Those in the chemoradiotherapy group received three cycles of neoadjuvant chemotherapy (100 mg/m(2) cisplatin and 85 mg/m(2) docetaxel) followed by radiotherapy with 44 Gy in 22 fractions over 3 weeks, and those in the control group received neoadjuvant chemotherapy alone. All patients were scheduled to undergo surgery. Randomisation was stratified by centre, mediastinal bulk (less than 5 cm vs 5 cm or more), and weight loss (5% or more vs less than 5% in the previous 6 months). The primary endpoint was event-free survival. Analyses were done by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00030771. FINDINGS: From 2001 to 2012, 232 patients were enrolled, of whom 117 were allocated to the chemoradiotherapy group and 115 to the chemotherapy group. Median event-free survival was similar in the two groups at 12·8 months (95% CI 9·7-22·9) in the chemoradiotherapy group and 11·6 months (8·4-15·2) in the chemotherapy group (p=0·67). Median overall survival was 37·1 months (95% CI 22·6-50·0) with radiotherapy, compared with 26·2 months (19·9-52·1) in the control group. Chemotherapy-related toxic effects were reported in most patients, but 91% of patients completed three cycles of chemotherapy. Radiotherapy-induced grade 3 dysphagia was seen in seven (7%) patients. Three patients died in the control group within 30 days after surgery. INTERPRETATION: Radiotherapy did not add any benefit to induction chemotherapy followed by surgery. We suggest that one definitive local treatment modality combined with neoadjuvant chemotherapy is adequate to treat resectable stage IIIA/N2 non-small-cell lung cancer. FUNDING: Swiss State Secretariat for Education, Research and Innovation (SERI), Swiss Cancer League, and Sanofi.
Resumo:
Mitochondria has an essential role in myocardial tissue homeostasis; thus deterioration in mitochondrial function eventually leads to cardiomyocyte and endothelial cell death and consequent cardiovascular dysfunction. Several chemical compounds and drugs have been known to directly or indirectly modulate cardiac mitochondrial function, which can account both for the toxicological and pharmacological properties of these substances. In many cases, toxicity problems appear only in the presence of additional cardiovascular disease conditions or develop months/years following the exposure, making the diagnosis difficult. Cardiotoxic agents affecting mitochondria include several widely used anticancer drugs [anthracyclines (Doxorubicin/Adriamycin), cisplatin, trastuzumab (Herceptin), arsenic trioxide (Trisenox), mitoxantrone (Novantrone), imatinib (Gleevec), bevacizumab (Avastin), sunitinib (Sutent), and sorafenib (Nevaxar)], antiviral compound azidothymidine (AZT, Zidovudine) and several oral antidiabetics [e.g., rosiglitazone (Avandia)]. Illicit drugs such as alcohol, cocaine, methamphetamine, ecstasy, and synthetic cannabinoids (spice, K2) may also induce mitochondria-related cardiotoxicity. Mitochondrial toxicity develops due to various mechanisms involving interference with the mitochondrial respiratory chain (e.g., uncoupling) or inhibition of the important mitochondrial enzymes (oxidative phosphorylation, Szent-Györgyi-Krebs cycle, mitochondrial DNA replication, ADP/ATP translocator). The final phase of mitochondrial dysfunction induces loss of mitochondrial membrane potential and an increase in mitochondrial oxidative/nitrative stress, eventually culminating into cell death. This review aims to discuss the mechanisms of mitochondrion-mediated cardiotoxicity of commonly used drugs and some potential cardioprotective strategies to prevent these toxicities.
Resumo:
Stochastic learning processes for a specific feature detector are studied. This technique is applied to nonsmooth multilayer neural networks requested to perform a discrimination task of order 3 based on the ssT-block¿ssC-block problem. Our system proves to be capable of achieving perfect generalization, after presenting finite numbers of examples, by undergoing a phase transition. The corresponding annealed theory, which involves the Ising model under external field, shows good agreement with Monte Carlo simulations.
Resumo:
This thesis presents experimental studies of rare earth (RE) metal induced structures on Si(100) surfaces. Two divalent RE metal adsorbates, Eu and Yb, are investigated on nominally flat Si(100) and on vicinal, stepped Si(100) substrates. Several experimental methods have been applied, including scanning tunneling microscopy/spectroscopy (STM/STS), low energy electron diffraction (LEED), synchrotron radiation photoelectron spectroscopy (SR-PES), Auger electron spectroscopy (AES), thermal desorption spectroscopy (TDS), and work function change measurements (Δφ). Two stages can be distinguished in the initial growth of the RE/Si interface: the formation of a two-dimensional (2D) adsorbed layer at submonolayer coverage and the growth of a three-dimensional (3D) silicide phase at higher coverage. The 2D phase is studied for both adsorbates in order to discover whether they produce common reconstructions or reconstructions common to the other RE metals. For studies of the 3D phase Yb is chosen due to its ability to crystallize in a hexagonal AlB2 type lattice, which is the structure of RE silicide nanowires, therefore allowing for the possibility of the growth of one-dimensional (1D) wires. It is found that despite their similar electronic configuration, Eu and Yb do not form similar 2D reconstructions on Si(100). Instead, a wealth of 2D structures is observed and atomic models are proposed for the 2×3-type reconstructions. In addition, adsorbate induced modifications on surface morphology and orientational symmetry are observed. The formation of the Yb silicide phase follows the Stranski-Krastanov growth mode. Nanowires with the hexagonal lattice are observed on the flat Si(100) substrate, and moreover, an unexpectedly large variety of growth directions are revealed. On the vicinal substrate the growth of the silicide phase as 3D islands and wires depends drastically on the growth conditions. The conditions under which wires with high aspect ratio and single orientation parallel to the step edges can be formed are demonstrated.
Resumo:
Electron scattering on a thin layer where the potential depends self-consistently on the wave function has been studied. When the amplitude of the incident wave exceeds a certain threshold, a soliton-shaped brightening (darkening) appears on the layer causing diffraction of the wave. Thus the spontaneously formed transverse pattern can be viewed as a self-induced nonlinear quantum screen. Attractive or repulsive nonlinearities result in different phase shifts of the wave function on the screen, which give rise to quite different diffraction patterns. Among others, the nonlinearity can cause self-focusing of the incident wave into a beam, splitting in two "beams," single or double traces with suppressed reflection or transmission, etc.