923 resultados para High yield


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research is concerned with thermochemical characterisation of straws and high yielding perennial grasses. Crops selected for this study include wheat straw (Triticum aestivum), rape straw (Brassica napus), reed canary grass (Phalaris arundinacea) and switch grass (Panicum virgatum). Thermogravimetric analysis (TGA) was used to examine the distribution of char and volatiles during pyrolysis up to 900 °C. Utilising multi-heating rate thermogravimetric data, the Friedman iso-conversional kinetic method was used to determine pyrolysis kinetic parameters. Light and medium volatile decomposition products were investigated using pyrolysis–gas chromatography–mass spectrometry (Py–GC–MS) up to 520 °C. The 22 highest yielding identifiable cellulose, hemicellulose and lignin biomass markers were semi-quantified taking into consideration peak areas from GC chromatograms. Notable differences can be seen in butanedioic acid, dimethyl ester (hemicelluloses decomposition products), 2-methoxy-4-vinylphenol (lignin marker) and levoglucosan (intermediate pyrolytic decomposition product of cellulose) content when comparing perennial grasses with straw. From results presented in this study, perennial grasses such as switch grass, have the most attractive properties for fast pyrolysis processing. This is because of the observed high volatile yield content of 82.23%, heating value of 19.64 MJ/kg and the relatively low inorganic content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The initial aim of this project was to improve the performance of a chromatographic bioreactor-separator (CBRS). In such a system, a dilute enzyme solution is pumped continuously through a preparative chromatographic column, while pulses of substrate are periodically injected on to the column. Enzymic reaction and separation are therefore performed in a single unit operation. The chromatographic columns used were jacketed glass columns ranging from 1 to 2 metres long with an internal diameter of 1.5 cm. Linking these columns allowed 1, 2, 3 and 4 metre long CBRS systems to be constructed. The hydrolysis of lactose in the presence of β~galactosidase was the reaction of study. From previous work at Aston University, there appeared to be no difficulties in achieving complete lactose hydrolysis in a CBRS. There did, however, appear to be scope for improving the separative performance, so this was adopted as an initial goal. Reducing the particle size of the stationary phase was identified as a way of achieving this improvement. A cation exchange resin was selected which had an average particle size of around half that previously used when studying this reaction. A CBRS system was developed which overcame the operational problems (such as high pressure drop development) associated with use of such a particle size. A significant improvement in separative power was achieved. This was shown by an increase in the number of theoretical plates (N) from about 500 to about 3000 for a 2 metre long CBRS, coupled with higher resolution. A simple experiment with the 1 metre column showed that combined bioreaction and separation was achievable in this system. Having improved the separative performance of the system, the factors affecting enzymic reaction in a CBRS were investigated; including pulse volume and the degree of mixing between enzyme and substrate. The progress of reaction in a CBRS was then studied. This information was related to the interaction of reaction and separation over the reaction zone. The effect of injecting a pulse over a length of time as in CBRS operation was simulated by fed batch experiments. These experiments were performed in parallel with normal batch experiments where the substrate is mixed almost instantly with the enzyme. The batch experiments enabled samples to be taken every minute and revealed that reaction is very rapid. The hydrodynamic characteristics of the two injector configurations used in CBRS construction were studied using Magnetic Resonance Imaging, combined with hydrodynamic calculations. During the optimisation studies, galactooligosaccharides (GOS) were detected as intermediates in the hydrolysis process. GOS are valuable products with potential and existing applications in food manufacture (as nutraceuticals), medicine and drug targeting. The focus of the research was therefore turned to GOS production. A means of controlling reaction to arrest break down of GOS was required. Raising temperature was identified as a possible means of achieving this within a CBRS. Studies were undertaken to optimise the yield of oligosaccharides, culminating in the design, construction and evaluation of a Dithermal Chromatographic Bioreactor-separator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A review of ultrafiltration (UF) theory and equipment has been made. Dextran is fractionated industrially by ethanol precipitation, which is a high energy intensive process. The aims of this work were to investigate the fractionation of dextran using UF and to compare the efficiency and costs of UF fractionation with ethanol fractionation. This work is the continuation of research conducted at Aston, which was concerned with the fractionation of dextran using gel permeation chromatography (GPC) and hollow fibre UF membranes supplied by Amicon Ltd. Initial laboratory work centred on determining the most efficient make and configuration of membrane. UF membranes of the Millipore cassette configuration, and the DDS flat-sheet configuration, were examined for the fracationation of low molecular weight (MW) dextran. When compared to Amicon membranes, these membranes were found to be inferior. DDS membranes of 25 000 and 50 000 MW cut-offs were shown to be capable of fractionating high MW dextran with the same efficiency as GPC. The Amicon membranes had an efficiency comparable to that of ethanol fractionation. To increase this efficiency a theoretical UF membrane cascade was adopted to utilize favourable characteristics encountered in batch mode membrane experiments. The four stage cascade used recycled permeates in a counter- current direction to retentate flow, and was operated 24 hours per day controlled by a computer. Using 5 000 MW cut-off membranes the cascade improved the batch efficiency by at least 10% for a fractionation at 6 000 MW. Economic comparisons of ethanol fractionation, combined GPC and UF fractionation, and UF fractionation of dextran were undertaken. On an economic basis GPC was the best method for high MW dextran fractionation. When compared with a plant producing 100 tonnes pa of clinical dextran, by ethanol fractionation, a combined GPC and UF cascade fractionation could produce savings on operating costs and an increased dextran yield of 5%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil erosion is one of the most pressing issues facing developing countries. The need for soil erosion assessment is paramount as a successful and productive agricultural base is necessary for economic growth and stability. In Ghana, a country with an expanding population and high potential for economic growth, agriculture is an important resource; however, most of the crop production is restricted to low technology shifting cultivation agriculture. The high intensity seasonal rainfall coincides with the early growing period of many of the crops meaning that plots are very susceptible to erosion, especially on steep sided valleys in the region south of Lake Volta. This research investigated the processes of soil erosion by rainfall with the aim of producing a sediment yield model for a small semi-agricultural catchment in rural Ghana. Various types of modelling techniques were considered to discover those most applicable to the sub-tropical environment of Southern Ghana. Once an appropriate model had been developed and calibrated, the aim was to look at how to enable the scaling up of the model using sub-catchments to calculate sedimentation rates of Lake Volta. An experimental catchment was located in Ghana, south west of Lake Volta, where data on rainstorms and the associated streamflow, sediment loads and soil data (moisture content, classification and particle size distribution) was collected to calibrate the model. Additional data was obtained from the Soil Research Institute in Ghana to explore calibration of the Universal Soil Loss Equation (USLE, Wischmeier and Smith, 1978) for Ghanaian soils and environment. It was shown that the USLE could be successfully converted to provide meaningful soil loss estimates in the Ghanaian environment. However, due to experimental difficulties, the proposed theory and methodology of the sediment yield model could only be tested in principle. Future work may include validation of the model and subsequent scaling up to estimate sedimentation rates in Lake Volta.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recently described respiratory strain Saccharomyces cerevisiae KOY.TM6*P is, to our knowledge, the only reported strain of S. cerevisiae which completely redirects the flux of glucose from ethanol fermentation to respiration, even at high external glucose concentrations (27). In the KOY.TM6*P strain, portions of the genes encoding the predominant hexose transporter proteins, Hxt1 and Hxt7, were fused within the regions encoding transmembrane (TM) domain 6. The resulting chimeric gene, TM6*. encoded a chimera composed of the amino-terminal half of Hxt1 and the carboxy-terminal half of Hxt7. It was subsequently integrated into the genome of an hxt null strain. In this study, we have demonstrated the transferability of this respiratory phenotype to the V5 hxt1-7Δ strain, a derivative of a strain used in enology. We also show by using this mutant that it is not necessary to transform a complete hxt null strain with the TM6* construct to obtain a nonethanol-producing phenotype. The resulting V5.TM6*P strain, obtained by transformation of the V5 hxt1-7Δ strain with the TM6* chimeric gene, produced only minor amounts of ethanol when cultured on external glucose concentrations as high as 5%. Despite the fact that glucose flux was reduced to 30% in the V5.TM6*P strain compared with that of its parental strain, the V5.TM6*P strain produced biomass at a specific rate as high as 85% that of the V5 wild-type strain. Even more relevant for the potential use of such a strain for the production of heterologous proteins and also of low-alcohol beverages is the observation that the biomass yield increased 50% with the mutant compared to its parental strain. Copyright © 2005, American Society for Microbiology. All Rights Reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High strength low alloy steels have been shown to be adversely affected by the existence of regions of poor impact toughness within the heat affected zone (HAZ) produced during multipass welding. One of these regions is the intercritically reheated coarse grained HAZ or intercritical zone. Since this region is generally narrow and discontinuous, of the order of 0.5 mm in width, weld simulators are often employed to produce a larger volume of uniform microstructure suitable for toughness assessment. The steel usedfor this study was a commercial quenched and tempered steel of 450 MN m -2 yield strength. Specimen blanks were subjected to a simulated welding cycle to produce a coarse grained structure of upper bainite during the first thermal cycle, followed by a second thermal cycle where the peak temperature T p2 was controlled. Charpy tests carried out for T p2 values in the range 650-850°C showed low toughness for T p2 values between 760 and 790°C, in the intercritical regime. Microstructural investigation of the development of grain boundary martensite-retained austenite (MA) phase has been coupled with image analysis to measure the volume fraction of MAformed. Most of the MA constituent appears at the prior austenite grain boundaries during intercritical heating, resulting in a 'necklace' appearance. For values of T p2 greater than 790°C the necklace appearance is lost and the second phase areas are observed throughout the structure. Concurrent with this is the development of the fine grained, predominantly ferritic structure that is associated with the improvement in toughness. At this stage the microstructure is transforming from the intercritical regime structure to the supercritically reheated coarse grained HAZ structure. The toughness improvement occurs even though the MA phase is still present, suggesting that the embrittlement is associated with the presence of a connected grain boundary network of the MA phase. The nature of the second phase particles can be controlled by the cooling rate during the second cycle and variesfrom MA phase at high cooling rates to a pearlitic structure at low cooling rates. The lowest toughness of the intercritical zone is observed only when MA phase is present. The reason suggested for this is that only the MA particles debond readily, a number of debonded particles in close proximity providing sufficient stress concentration to initiate local cleavage. © 1993 The Institute of Materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High surface area nanosized α-alumina has been obtained by thermally treating a sol-gel-derived mesophase at 1200 C; the mesophase was synthesized by a sol-gel route involving evaporation induced self-assembly (EISA) of a hydrolyzed gel from Al-tri-sec-butoxide in s-BuOH in the presence of a nonionic surfactant (EO20PO70EO20), HCl as catalyst, and water (H2O/Al = 6). The activated material renders moderate surface areas of about 8.4-10 m2 g-1, associated with significant crystallite coarsening. The key aspect to produce smaller crystallites is making the mesophase more resistant to coarsening. This was achieved by enhancing the condensation step by treating the hydrolyzed gel with tetrabutyl ammonium hydroxide (TBAOH) before evaporation. The characteristics of the mesophase indicate condensation of the primary particles with less AlO5 unsaturated sites, at the expense of a lower solid yield due to small crystallites dissolution. The activated TBAOH condensed EISA material is composed of α-alumina aggregated crystallites of about 60-100 nm, and the material possesses surface areas ranging from 16 to 24 m2 g -1 due to the improved resistance to coarsening. At least two aspects are suggested to play a role in this. The worm-hole morphology of the mesophase aggregates yields high particle coordination, which favors densification rather than coarsening. Furthermore, the decrease of the AlO5 defect sites by the TBAOH condensation makes the mesophase less reactive and consequently more resistant to coarsening. © 2013 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most pharmaceutically relevant proteins and many extracellular proteins contain disulfide bonds. Formation of the correct disulfide bonds is essential for stability in almost all cases. Disulfide containing proteins can be rapidly and inexpensively overexpressed in bacteria. However, the overexpressed proteins usually form aggregates inside the bacteria, called inclusion bodies, which contains inactive and non-native protein. To obtain native protein, inclusion bodies need to be isolated and resolubilized, and then the resulting protein refolded in vitro. In vitro protein folding is aided by the addition of a redox buffer, which is composed of a small molecule disulfide and/or a small molecule thiol. The most commonly used redox buffer contains reduced and oxidized glutathione. Recently, aliphatic dithiols and aromatic monothiols have been employed as redox buffers. Aliphatic dithiols improved the yield of native protein as compared to the aliphatic thiol, glutathione. Dithiols mimic the in vivo protein folding catalyst, protein disulfide isomerase, which has two thiols per active site. Furthermore, aromatic monothiols increased the folding rate and yield of lysozyme and RNase A relative to glutathione. By combining the beneficial properties of aliphatic dithiols and aromatic monothiols, aromatic dithiols were designed and were expected to increase in vitro protein folding rates and yields. Aromatic monothiols (1-4) and their corresponding disulfides (5-8), two series of ortho- and para-substituted ethylene glycol dithiols (9-15), and a series of aromatic quaternary ammonium salt dithiols (16-17) were synthesized on a multigram scale. Monothiols and disulfides (1-8) were utilized to fold lysozyme and bovine pancreatic trypsin inhibitor. Dithiols (11-17) were tested for their ability to fold lysozyme. At pH 7.0 and pH 8.0, and high protein concentration (1 mg/mL), aromatic dithiols (16, 17) and a monothiol (3) significantly enhanced the in vitro folding rate and yield of lysozyme relative to the aliphatic thiol, glutathione. Additionally, aromatic dithiols (16, 17) significantly enhance the folding yield as compared to the corresponding aromatic monothiol (3). Thus, the folding rate and yield enhancements achieved in in vitro protein folding at high protein concentration will decrease the volume of renaturation solution required for large scale processes and consequently reduce processing time and cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Invasive species allow an investigation of trait retention and adaptations after exposure to new habitats. Recent work on corals from the Gulf of Aqaba (GoA) shows that tolerance to high temperature persists thousands of years after invasion, without any apparent adaptive advantage. Here we test whether thermal tolerance retention also occurs in another symbiont-bearing calcifying organism. To this end, we investigate the thermal tolerance of the benthic foraminifera Amphistegina lobifera from the GoA (29° 30.14167 N 34° 55.085 E) and compare it to a recent "Lessepsian invader population" from the Eastern Mediterranean (EaM) (32° 37.386 N, 34°55.169 E). We first established that the studied populations are genetically homogenous but distinct from a population in Australia, and that they contain a similar consortium of diatom symbionts, confirming their recent common descent. Thereafter, we exposed specimens from GoA and EaM to elevated temperatures for three weeks and monitored survivorship, growth rates and photophysiology. Both populations exhibited a similar pattern of temperature tolerance. A consistent reduction of photosynthetic dark yields was observed at 34°C and reduced growth was observed at 32°C. The apparent tolerance to sustained exposure to high temperature cannot have a direct adaptive importance, as peak summer temperatures in both locations remain <32°C. Instead, it seems that in the studied foraminifera tolerance to high temperature is a conservative trait and the EaM population retained this trait since its recent invasion. Such pre-adaptation to higher temperatures confers A. lobifera a clear adaptive advantage in shallow and episodically high temperature environments in the Mediterranean under further warming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The National Fisheries Resources Research Institute (NaFIRRI), the Directorate of Fisheries Resources (DiFR), the Local Government fisheries staff and those from the Beach Management Units (BMUs) of the riparian districts to Lake Victoria regularly and jointly conduct Frame and Catch Assessment Surveys. The information obtained is used to guide fisheries management and development. We reveal the trends in the commercial fish catch landings and fishing effort on the Uganda side of Lake Victoria, over a 15 year period (2000-2015) and provide the underlying factors to the observed changes. The contribution of the high value large size species (Nile perch and Tilapia) to the commercial catch of Lake Victoria has significantly reduced while that of the low value small size species, Mukene has increased over a ten year (2005-2015)period. The information is intended to update and sensitize the key stakeholders on the status of the Lake Victoria fisheries. In addition, the information provided is expected to guide policy formulation and management planning by the fisheries managers at all levels including the BMUs and Landing Site Management Committees (LSMCs), the Local government fisheries staff and the Directorate of Fisheries Resources. The information is anticipated to create awareness among the lakeside fisher communities to reverse the current trend in fish declines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project provided information, selection techniques and strategies to facilitate the development of high-yielding, stay-green wheat varieties for Australian growers through: a) Improved understanding of the relationships between seminal root traits and other root- and shoot-related traits in determining high-yielding, stay-green phenotypes. b). Molecular markers and rapid phenotypic screening methods that allow selection in breeding programs and identification of genetic regions controlling favourable traits. c). Identification of traits leading to high-yielding, stay-green phenotypes for particular target populations of environments using computer simulation studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low temperature is one of the main environmental constraints for rice ( Oryza sativa L.) grain production yield. It is known that multi-environment studies play a critical role in the sustainability of rice production across diverse environments. However, there are few studies based on multi-environment studies of rice in temperate climates. The aim was to study the performance of rice plants in cold environments. Four experimental lines and six cultivars were evaluated at three locations during three seasons. The grain yield data were analyzed with ANOVA, mixed models based on the best linear unbiased predictors (BLUPs), and genotype plus Genotype × Environment interaction (GGE) biplot. High genotype contribution (> 25%) was observed in grain yield and the interaction between genotype and locations was not very important. Results also showed that ‘Quila 241319’ was the best experimental line with the highest grain yield (11.3 t ha-1) and grain yield stability across the environments; commercial cultivars were classified as medium grain yield genotypes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Micronutrients are part of many crucial physiological plant processes. The combined application of N and micronutrients helps in obtaining grain yield with beneficial technological and consumer properties. The main micronutrients needed by cereals include Cu, Mn, and Zn. The subject of this study was to determine yield, quality indicators (protein content and composition, gluten content, grain bulk density, Zeleny sedimentation index, and grain hardness), as well as mineral content (Cu, Zn, Mn, Fe) in winter wheat grain ( Triticum aestivum L.) fertilized by foliar micronutrient application. A field experiment was carried out at the Educational and Experimental Station in Tomaszkowo, Poland. The application of mineral fertilizers (NPK) supplemented with Cu increased Cu content (13.0%) and ω, α/β, and γ (18.7%, 4.9%, and 3.4%, respectively) gliadins in wheat grain. Foliar Zn fertilization combined with NPK increased Cu content (14.9%) as well as high (HMW) and low molecular weight (LMW) glutenins (38.8% and 6.7%, respectively). Zinc fertilization significantly reduced monomeric gliadin content and increased polymeric glutenin content in grain, which contributed in reducing the gliadin:glutenin ratio (0.77). Mineral fertilizers supplemented with Mn increased Fe content in wheat grain (14.3%). It also significantly increased protein (3.8%) and gluten (4.4%) content, Zeleny sedimentation index (12.4%), and grain hardness (18.5%). Foliar Mn fertilization increased the content of ω, α/β, and γ gliadin fractions (19.9%, 9.5%, and 2.1%, respectively), as well as HMW and LMW glutenins (18.9% and 4.5%, respectively). Mineral NPK fertilization, combined with micronutrients (Cu + Zn + Mn), increased Cu and Zn content in grain (22.6% and 17.7%, respectively). The content of ω, α/β, and γ gliadins increased (20.3%, 10.5%, and 12.1%, respectively) as well as HMW glutenins (7.9%).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High quality snap bean ( Phaseolus vulgaris L. ) can be produced under rain-fed conditions, provided that adequate moisture is available. However, drought may occur at any stage of growth of snap bean. The objective of this study was to evaluate the effect of drought stress at different growth stages on pod physical quality and nutrient concentrations. An experiment was conducted at the Horticulture Greenhouse, Hawassa University in Ethiopia. Drought stress (50% of field capacity [FC]) was applied at the unfolding of the fourth trifoliate leaf, flowering and pod formation, against a control with no drought stress. The drought stress treatments and eight cultivars were arranged as a factorial experiment in a completely randomised design, with three replications. Drought stress (50% FC) during reproductive stages significantly (P<0.05) reduced pod texture, appearance, and pod curvature. Drought stress increased protein and zinc concentrations by 41 and 15%, respectively; but reduced iron concentration by 15% in snap bean pods. All the tested cultivars had relatively similar responses to drought stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer is a major disease burden worldwide resulting in high morbidity and mortality. It is the leading cause of mortality in developed countries and is one of the three leading causes of death for adults in developing countries. Pathological examination of tissue biopsies with histological confirmation of a correct cancer diagnosis is central to cancer care. Without an accurate and specific pathologic diagnosis, effective treatment cannot be planned or delivered. In addition, there are marked geographical variations in incidence of cancer overall, and of the specific cancers seen. Much of the published literature on cancer incidence in developing countries reflects gross estimates and may not reflect reality. Performing baseline studies to understand these distributions lays the groundwork for further research in this area of cancer epidemiology. Our current study surveys and ranks cancer diagnoses by individual anatomical site at Queen Elizabeth Central Hospital (QECH) which is the largest teaching and referral hospital in Malawi. A retrospective study was conducted reviewing available pathology reports over a period of one full year from January 2010 to December 2010 for biopsies from patients suspected clinically of having cancer. There were 544 biopsies of suspected cancer, taken from 96 anatomical sites. The oesophagus was the most common biopsied site followed by breast, bladder, bone, prostate, bowel, and cervical lymph node. Malignancies were found in biopsies of the oesophagus biopsies (squamous cell carcinoma, 65.1%; adenocarcinoma, 11.6%), breast (57.5%), bladder (squamous cell carcinoma, 53.1%) and stomach (37.6%). Our study demonstrates that the yield of biopsy for clinically suspected malignancy was greater than 50% for the 11 most common sites and provides a current survey of cancer types by site present in the population reporting to our hospital.